Explanation:
An perfect mass less spring, attached at one end and with a free mass attached at the other end, will have a distinct frequency of oscillation depending on its constant spring and mass. On the other hand, a spring with mass along its length will not have a characteristic frequency of oscillation.
Alternatively, based on its spring constant and mass per length, it will now have a wave Speed. It would be possible to use all wavelengths and frequencies, as long as the component fλ= S, where S is the spring wave size. If that sounds like longitudinal waves, like solid sound waves.
Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
<u>Input our values:</u>
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
<u>Divide both sides by 400 to isolate t:</u>
<u />
= 
t = 7.5 (s)
<u>It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.</u>
<u></u>
If you have any questions on how I got to the answer, just ask!
- breezyツ
Answer:
560 m/s
Explanation:
Given,
Frequency ( f ) = 80 hz
Wavelength ( λ ) = 7.0 m = 7m
To find : Velocity ( v )
Formula : -
v = f λ
v = 80 x 7
v = 560 m/s
Hence, the velocity of the wave is 560 m/s.