Answer:
MgCO₃
Explanation:
From the question given above, we obtained:
MgF₂ + Li₂CO₃ —> __ + 2LiF
The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:
MgF₂ (aq) —> Mg²⁺ + 2F¯
Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯
MgF₂ + Li₂CO₃ —>
Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:
MgF₂ + Li₂CO₃ —> __ + 2LiF
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Therefore, the missing part of the equation is MgCO₃
<span>using the law pv=nrT and equating these you get the equation v1/t1 = v2/t2 since pressure is constant it also cancels with n and r. show that v1=36.4, t1 = 25 + 273.15 and t2 = 88 +273.15. 273.15 is the Kelvin conversion. then solve for v2. This is 44.1 L.</span>
4p, 3d, 3p, 3s, 2p, 2s and 1s orbitals may be occupied during de-excitation.<span />
Explanation :
The balanced chemical reaction will be,

By the stiochiometry, 3 moles of solid copper(II)oxide react with 2 moles of ammonia gas to give 3 moles of copper metal, 1 mole of nitrogen gas and 3 moles of liquid water.
The states of matter of each elements and compound is,
Copper(II)oxide is in solid state
Ammonia is in gaseous state
Copper metal is in solid state
Nitrogen is in gaseous state
Water is in liquid state
Answer:
During the initial cell operation, each reaction is thermodynamically favorable, but the larger operating potential of the lithium-iodine cell indicates that its cell reaction is more thermodynamically favorable. ( B )
During the initial cell operation, the oxidation of iodine is thermodynamically favorable but the oxidation of mercury is not. ( C )
Explanation:
<u>The major Differences between The Zinc mercury cell and Lithium-iodine cell are :</u>
During the initial cell operation, each reaction is thermodynamically favorable, but the larger operating potential of the lithium-iodine cell indicates that its cell reaction is more thermodynamically favorable. and
During the initial cell operation, the oxidation of iodine is thermodynamically favorable but the oxidation of mercury is not.
Given the relationship below,
Δ G = -nFE
E = emf of cell , G = free energy.
This relationship shows that if E is positive the reaction will be thermodynamically favorable also if E is large it will increase the negativity of free energy also From the question we can see that with the reduction of mercury the value of E is more positive and this shows that Mercury is thermodynamically unfavorable