1. The stratosphere is above the troposphere. This layer of the atmosphere is where planes fly. At the top of the stratosphere, there is a ozone layer.
2. The mesosphere is above the stratosphere. Temperatures drastically drop in the mesosphere. It is the middle layer of the atmosphere.
3. Here are the layers of the atmosphere:
- Troposphere
- Stratosphere
- Mesosphere
- Thermosphere
- Exosphere
Hope this helps you!
The moon clock is A) (9.8/1.6)h compared to 1 hour on Earth
Explanation:
The period of a simple pendulum is given by the equation

where
L is the length of the pendulum
g is the acceleration of gravity
In this problem, we want to compare the period of the pendulum on Earth with its period on the Moon. The period of the pendulum on Earth is

where
is the acceleration of gravity on Earth
The period of the pendulum on the Moon is

where
is the acceleration of gravity on the Moon
Calculating the ratio of the period on the Moon to the period on the Earth, we find

Therefore, for every hour interval on Earth, the Moon clock will display a time of
A) (9.8/1.6)h
#LearnwithBrainly
Answer:
42.5 m/s
Explanation:
Given:
x₀ = 0 m
x = 62 m
y₀ = 80 m
y = 0 m
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
Find: v
First, find the time it takes to land.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (80 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 4.04 s
Find the horizontal component vₓ:
x = x₀ + vₓ t − ½ aₓ t²
(62 m) = (0 m) + vₓ (4.04 s) − ½ (0 m/s²) (4.04 s)²
vₓ = 15.3 m/s
Find the vertical component vᵧ:
vᵧ = aᵧ t + v₀ᵧ
vᵧ = (-9.8 m/s²) (4.04 s) + (0 m/s)
vᵧ = -39.6 m/s
Find the speed using Pythagorean theorem:
v = √(vₓ² + vᵧ²)
v = √((15.3 m/s)² + (-39.6)²)
v = 42.5 m/s
That would be Cyanide.
Hope this helps! (:
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.