<u>Answer:</u> The concentration of reactant after the given time is 0.0205 M
<u>Explanation:</u>
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 11.0 min = 660 s (Conversion factor: 1 min = 60 s)
= initial amount of the reactant = 0.400 M
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.50\times 10^{-3}s^{-1}=\frac{2.303}{660s}\log\frac{0.400}{[A]}](https://tex.z-dn.net/?f=4.50%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B660s%7D%5Clog%5Cfrac%7B0.400%7D%7B%5BA%5D%7D)
![[A]=0.0205M](https://tex.z-dn.net/?f=%5BA%5D%3D0.0205M)
Hence, the concentration of reactant after the given time is 0.0205 M
Answer:
The correct answer is :
Natural fibres: these fibers are found naturally in the environment such as cotton, hemp or wool, all are made naturally found fibers.
sr. no. name type
1 Cotton natural
2 Linen natural
3 Silk natural
4 Wool natural
5. Hemp natural
Artificial fibres: made from the polymerization of their monomer unit for example polyester made from coal and petroleum products.
sr. no. name type
1 Polyester artificial
2 Rayon artificial
3 Spandex artificial
4 Acrylic artificial
5. microfibers artificial
4 atoms of Oxygen are required to make 2 atoms of hydrogen. The compound H2O is 1 Hydrogen and 2 Oxygen.
。☆✼★ ━━━━━━━━━━━━━━ ☾
mass = density x volume
Substitute your values in
mass = 2.7 x 21
Solve:
mass = 56.7g
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
Electrons in sigma <span>bonds remain localized between two atoms. Sigma </span><span>bond results from the formation of </span><span>a molecular orbital </span><span>by the end to </span><span>end overlap of atomic </span>orbitals. Electrons<span> in pi</span> bonds can become delocalized between more than two atoms. Pi bonds result from the formation of molecular orbital by side to side overlap of atomic orbitals.
<span> </span>