Answer:
A biology investigation usually starts with an observation—that is, something that catches the biologist’s attention. For instance, a cancer biologist might notice that a certain kind of cancer can't be treated with chemotherapy and wonder why this is the case. A marine ecologist, seeing that the coral reefs of her field sites are bleaching—turning white—might set out to understand why.
How do biologists follow up on these observations? How can you follow up on your own observations of the natural world? In this article, we’ll walk through the scientific method, a logical problem-solving approach used by biologists and many other scientists.
Explanation:
Answer:
Therefore 373 mole of Al produce 746 mole of water.
Explanation:
Given reaction is
3 Al+3NH₄ClO₄→Al₂O₃+AlCl₃+3NO+6H₂O
From the above reaction it is clear that 3 mole of Al produce 6 mole of water.
Therefore
3 mole of Al produce 6 mole of water.
1 mole of Al produce
mole of water.
373 mole of Al produce
mole of water.
= 746 mole of water.
Therefore 373 mole of Al produce 746 mole of water.
Answer:
1.91×1021/6.023×10^23
Explanation:
need thanks and make me brainiest if it helps you
<u>Answer:</u> The total pressure inside the container is 77.9 kPa
<u>Explanation:</u>
Dalton's law of partial pressure states that the total pressure of the system is equal to the sum of partial pressure of each component present in it.
To calculate the total pressure inside the container, we use the law given by Dalton, which is:

We are given:
Vapor pressure of oxygen gas,
= 40.9 kPa
Vapor pressure of nitrogen gas,
= 23.3 kPa
Vapor pressure of argon,
= 13.7 kPa
Putting values in above equation, we get:

Hence, the total pressure inside the container is 77.9 kPa
The general formula of an acid is HX where H+ acts as the cation while X can be a halogen (Cl-, Fl-, Br-, etc) and acts as the anion. There are also cases where X is an ion like SO42-, which brings two atoms of H in the formula. Strong acids dissociate completely while weak acids do not.