The given solution of Mn²⁺ is 0.60 mg/mL.
Hence mass of Mn²⁺ in 5 mL of solution = 0.60 mg/mL x 5 mL = 3 mg
Molar mass of Mn = 54.9 g/mol
Hence, moles of Mn²⁺ = 3 x 10⁻³ g / 54.9 g/mol = 5.46 x 10⁻⁵ mol
The balanced equation for the reaction is,
2Mn²⁺ + 5KIO₄ + 3H₂O → 2MnO₄⁻ + 5KIO₃ + 6H⁺
The stoichiometric ratio between Mn²⁺ and KIO₄ is 2 : 5
Hence, moles of KIO₄ reacted = 5.46 x 10⁻⁵ mol x (5 / 2)
= 13.65 x 10⁻⁵ mol
Molar mass of KIO₄ = 230 g/mol
Hence needed mass of KIO₄ = 13.65 x 10⁻⁵ mol x 230 g/mol
= 0.031395 g
= 31.395 mg
≈ 31.4 mg
Answer:
Because the most common form of Nickel is Ni-58 while the most common form of Cobalt is Co-59, this means that Cobalt (which is number 27 on the periodic table) has 27 protons and 32 neutrons. Therefore 1 less proton but 2 more neutrons and hence has a greater mass than Nickel.
Explanation:
Answer:
4)experiments with cathode ray tubes
Explanation:
when sufficiently high voltage is applied across the electrods, current starts flowing through a stream of particles moving in the tube the negative electrode (cathode) to the positive electrode (anode). These were called Cathode Rays or Cathode Ray Particles
Answer:
2.
Explanation:
When you put the paper in a solution, it will turn blue if it is basic, or red if it is acidic. If it does not change color, it is fairly neutral.
The answer gonna be: 1/2^n = 1/2^4 = 0.0625
So, 6.25% sample has not decayed yet!!!