The Reaction is spontaneous when temperature is 430 K. Hence, Option (C) is correct.
<h3>
</h3><h3>
What is Spontaneous reaction ?</h3>
Reactions are favorable when they result in a decrease in enthalpy and an increase in entropy of the system.
When both of these conditions are met, the reaction occurs naturally.
Spontaneous reaction is a reaction that favors the formation of products at the conditions under which the reaction is occurring.
According to Gibb's equation:
ΔG = ΔH - TΔS
ΔG = Gibbs free energy
ΔH = enthalpy change = +62.4 kJ/mol
ΔS = entropy change = +0.145 kJ/molK
T = temperature in Kelvin
- ΔG = +ve, reaction is non spontaneous
- ΔG = -ve, reaction is spontaneous
- ΔG = 0, reaction is in equilibrium
ΔH - TΔS = 0 for reaction to be spontaneous
T = ΔH / ΔS
Here,
T = 500K
Thus the Reaction is spontaneous when temperature is 500 K.
Learn more about Gibbs free energy here ;
https://brainly.in/question/13372282
#SPJ1
The answer is "opposite charges."
Answer : The fraction of carbonic acid present in the blood is 5.95%
Explanation :
The mixture consists of carbonic acid ( H₂CO₃) and bicarbonate ion ( HCO₃⁻). This represents a mixture of weak acid and its conjugate which is a buffer.
The pH of a buffer is calculated using Henderson equation which is given below.
![pH = pKa + log \frac{[Base]}{[Acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%20%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D)
We have been given,
pH = 7.5
pKa of carbonic acid = 6.3
Let us plug in the values in Henderson equation to find the ratio Base/Acid.
![7.5 = 6.3 + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=7.5%20%3D%206.3%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![1.2 = log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=1.2%20%3D%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![\frac{[Base]}{[Acid]} = 10^{1.2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2010%5E%7B1.2%7D)
![\frac{[Base]}{[Acid]} = 15.8](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2015.8)
![[Base] = 15.8 \times [Acid]](https://tex.z-dn.net/?f=%5BBase%5D%20%3D%2015.8%20%5Ctimes%20%5BAcid%5D)
The total of mole fraction of acid and base is 1. Therefore we have,
![[Acid] + [Base] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%20%5BBase%5D%20%3D%201)
But Base = 15.8 x [Acid]. Let us plug in this value in above equation.
![[Acid] + 15.8 \times [Acid] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%2015.8%20%5Ctimes%20%5BAcid%5D%20%3D%201)
![16.8 [Acid] = 1](https://tex.z-dn.net/?f=16.8%20%5BAcid%5D%20%3D%201)
![[Acid] = \frac{1}{16.8}](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%20%5Cfrac%7B1%7D%7B16.8%7D)
![[Acid] = 0.0595](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%200.0595)
[Acid] = 0.0595 x 100 = 5.95 %
The fraction of carbonic acid present in the blood is 5.95%
They both break down and and erode
Answer:
Average atomic mass = 63.553 amu.
Explanation:
Given data:
Abundance of Y-63 = 69.17%
Abundance of Y-65 = 100 - 69.17 = 30.83%
Atomic mass of Y-63 = 62.940 amu
Atomic mass of Y-65 = 64.928 amu
Atomic mass of Y = ?
Solution:
Average atomic mass= (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass= (62.940×69.17)+(64.928×30.83) /100
Average atomic mass = 4353.560 + 2001.730 / 100
Average atomic mass = 6355.29 / 100
Average atomic mass = 63.553 amu.