Answer:
0.47 m
Explanation:
= Number of vibrations = 37
= total time taken = 33 s
= time period of each vibration
frequency of vibration is given as
Hz
= distance traveled along the rope = 421 cm = 4.21 m
= time taken to travel the distance = 8 s
= speed of the wave
Speed of the wave is given as

= wavelength of the harmonic wave
wavelength of the harmonic wave is given as

Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
Answer:
25 to the right
Explanation:
there you go friend your awsome
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.