The correct graph is <u>D</u>.
The graph <em>A</em> is a straight line sloping downwards and it shows that the speed of the body is decreasing at a constant rate. Therefore, this s a graph of a body that is under a constant deceleration.
The graph B is a straight line which slopes upwards. Hence the graph shows that the speed of the body increases at a constant rate. Therefore, this is a graph of a body that is accelerating at a constant rate.
The graph C is curved line, which curves upwards. The slope of the curve increases with time. This is therefore, a graph of a body which is under increasing acceleration.
The graph D, however is a straight line parallel to the time axis. The speed of the body has the same value at all times. Therefore, Graph D is the graph which shows the motion of a body with constant speed.
<span>Reducing the distance between them. In theory, also increasing the mass; but you can't really change the mass of an object. However, you can compare the forces if you replace an object by a different object, which has a different mass.
</span>
i hope this will work..
Answer:
For elliptical orbits: seldom
For circular orbits: always
Explanation:
We start by analzying a circular orbit.
For an object moving in circular orbit, the direction of the acceleration (centripetal acceleration) is always perpendicular to the direction of motion of the object.
Since acceleration has the same direction of the force (according to Newton's second law of motion), this means that the direction of the force (the centripetal force) is always perpendicular to the velocity of the object.
So for a circular orbit,
the direction of the velocity of the satellite is always perpendicular to the net force acting upon the satellite.
Now we analyze an elliptical orbit.
An elliptical orbit correponds to a circular orbit "stretched". This means that there are only 4 points along the orbit in which the acceleration (and therefore, the net force) is perpendicular to the direction of motion (and so, to the velocity) of the satellite. These points are the 4 points corresponding to the intersections between the axes of the ellipse and the orbit itself.
Therefore, for an elliptical orbit,
the direction of the velocity of the satellite is seldom perpendicular to the net force acting upon the satellite.
The coefficient of friction is 0.051
Explanation:
The motion of the skater is a uniformly accelerated motion, therefore we can use the following suvat equation:

where:
v = 0 is the final velocity of the skater (he comes to a stop)
u = 10.0 m/s is his initial velocity
a is the acceleration
is the distance he travels before stopping
Solving for a, we find the acceleration of the skater:

We also know that the net force acting on the skater is the force of friction, therefore we can write (Newton's second law of motion):

where
is the force of friction
m is the mass of the skater
is the coefficient of friction
is the acceleration
is the acceleration of gravity
Solving for
, we find the coefficient of friction:

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly