Answer:
The correct answer is - Plantae.
Explanation:
Drosera m<em>agnifica</em> is discovered in 2015 for the first time and the characteristics this organism's cell shows are -
- permanent vacuoles
- surrounded by cellulose layer
Vacuoles are present in both Plantae and Animalia kingdom of the eukaryotic organism but in animal cells, there are small and numerous vacuoles present and they are not permanent whereas in plant cells vacuoles are present permanently.
The cell of an animal cell has no surrounding layer other than cell membrane while in the plant cell there is a supporting and protecting layer of cellulose cell wall present.
On the basis of the given characteristics, it is confirmed that the Drosera magnifica belongs to Plantae kingdom.
Answer:

Explanation:
To solve this exercise it is necessary to take into account the concepts related to gravitational potential energy, as well as the concept of perigee and apogee of a celestial body.
By conservation of energy we know that,

Where,

Replacing


Our values are given by,





Replacing at the equation,


Therefore the Energy necessary for Sputnik I as it moved from apogee to perigee was 
For the purpose we will use the following equation for potential energy:
U = m * g * h
In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth).
When we plug values into the equation, we get following:
U= 65.7kg * 9.8 N/kg *135m = 86921.1 J = 86.92 kJ
The ironwood will because it it more heavy and the others are not
The higher the amount is the more possible it is to sink
Hope this helped
The velocity of the package after it has fallen for 3.0 s is 29.4 m/s
From the question,
A small package is dropped from the Golden Gate Bridge.
This means the initial velocity of the package is 0 m/s.
We are to calculate the velocity of the package after it has fallen for 3.0 s.
From one of the equations of kinematics for objects falling freely,
We have that,
v = u + gt
Where
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
and t is time
To calculate the velocity of the package after it has fallen for 3.0 s
That means, we will determine the value of v, at time t = 3.0 s
The parameters are
u = 0 m/s
g = 9.8 m/s²
t = 3.0 s
Putting these values into the equation
v = u + gt
We get
v = 0 + (9.8×3.0)
v = 0 + 29.4
v = 29.4 m/s
Hence, the velocity of the package after it has fallen for 3.0 s is 29.4 m/s
Learn more here: brainly.com/question/13327816