Answer:
2.06 N/m
Explanation:
The system makes 10.0 complete oscillations in 17.0 s. So, the frequency of the system is

The angular frequency of the system is given by

In a simple harmonic motion, the angular frequency is related to the mass and the spring constant by

where
k is the spring constant
m is the mass
Here we know

So we can solve the formula to find k:

I can't give an exact number if the original velocity of ds-1 is not given. In that case, the final answer should just be in terms of an equation. Let's denote the original velocity to be v₀ and the days to be d.
Part a.)
v = v₀ + 9.23d
3440 = v₀ + 9.23d
9.23d = 3,440 - v₀
d = (3,440 - v₀)/9.23
Part b.)
The acceleration is the change in velocity per unit time. So, that would be 9.23 m/s per day. Since there are 86,400 s in a day:
a = 9.23 m/s / day * 1 day/ 86,400 s
a = 0.0001068 m/s²
Answer:
Double Replacement.
Explanation:
It's actually simple. Each of those elements have a meaning of a material. So, in this case it's Lead(ii) Chloride + Silver Nitrate = Lead(ii) Nitrate + Silver ChlorideLead(ii).
Answer:
Option A
Explanation:
Velocity is expressed as distance covered per unit time, with respect to direction. Therefore, v=d/t
Given distance west as 60 km and time as 1.33 then velocity will be
V=60/1.33=45.112781954887 km/h
Rounded off as 45.11 km/h West
Velocity in East will also be given by substituting 40 km for d and 0.67 h for h hence
V=40/0.67=59.701492537313 km/h rounded off as 59.70 km/h East
Taking East as positive then West as negative, the sum of two velocities will be (59.70+-45.11)/2=7.295 km/h East
Approximately 10 km/h East since it is positive