Answer:
E=1824.81 V/m
Explanation:
Given that
Voltage difference = 5 V
Distance ,D= 3 mm
θ = 24°
As we know that electric filed given as

Given that D is 24° with respect to the perpendicular to the electrodes.So we have to take cos component of D.
d= D cosθ
d= 3 cos24°
d = 2.74 mm
So


E=1824.81 V/m
The block has maximum kinetic energy at the bottom of the curved incline. Since its radius is 3.0 m, this is also the block's starting height. Find the block's potential energy <em>PE</em> :
<em>PE</em> = <em>m g h</em>
<em>PE</em> = (2.0 kg) (9.8 m/s²) (3.0 m)
<em>PE</em> = 58.8 J
Energy is conserved throughout the block's descent, so that <em>PE</em> at the top of the curve is equal to kinetic energy <em>KE</em> at the bottom. Solve for the velocity <em>v</em> :
<em>PE</em> = <em>KE</em>
58.8 J = 1/2 <em>m v</em> ²
117.6 J = (2.0 kg) <em>v</em> ²
<em>v</em> = √((117.6 J) / (2.0 kg))
<em>v</em> ≈ 7.668 m/s ≈ 7.7 m/s
Answer:
100 m/s
Explanation:
Mass the mass of Bond's boat is m₁. His enemy's boat is twice the mass of Bond's i.e. m₂ = 2 m₁
Initial speed of Bond's boat is 0 as it won't start and remains stationary in the water. The initial speed of enemy's boat is 50 m/s. After the collision, enemy boat is completely stationary. Let v₁ is speed of bond's boat.
It is the concept of the conservation of momentum. It remains conserved. So,

Putting all the values, we get :

So, Bond's boat is moving with a speed of 100 m/s after the collision.
Answer:
The ratio of the orbital time periods of A and B is 
Solution:
As per the question:
The orbit of the two satellites is circular
Also,
Orbital speed of A is 2 times the orbital speed of B
(1)
Now, we know that the orbital speed of a satellite for circular orbits is given by:

where
R = Radius of the orbit
Now,
For satellite A:

Using eqn (1):
(2)
For satellite B:
(3)
Now, comparing eqn (2) and eqn (3):

Answer:
4.80 seconds
Explanation:
The velocity of sound is obtained from;
V= 2d/t
Where;
V= velocity of sound = 329.2 ms-1
d= distance from the wall = 790.5 m
t= time = the unknown
t= 2d/V
t= 2 × 790.5/ 329.2
t= 4.80 seconds