In an uniform circular motion, the direction of the net force on the object is radially inward, passing through the center of the circle.
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
Answer:
Longitudinal Mechanical Wave
Explanation:
Mechanical waves are the waves that require medium to propagate. And a longitudinal wave is a wave in which the vibration of the energy(here: mass specifically) is in the direction of propagation of wave.
Shock wave, strong pressure wave in any elastic medium such as air, water, or a solid substance, produced by supersonic aircraft, explosions, lightning, or other phenomena that create violent changes in pressure.
Shock waves travel faster than sound and their speed increases as the amplitude of the wave is increased but their intensity fades faster due to the fact that some of its energy gets expended in the form of heat due to the resistance of the medium.
Answer:
X-rays go all the way through the body, but ultraviolet rays do not.
Explanation:
An x-ray will show inside the body, but uv light isn't strong enough to go all the way through the body.