<span>D) Electromagnetic radiation travels in the form of longitudinal waves.</span>
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :
t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).
Speed = (frequency)x(wavelength).
Frequency = 6 Hz
Wavelength = 9mm = 0.009m.
Speed = (6 Hz) x (0.009m) = 0.054 m/s or 54 mm/sec.
The electric potential energy of the charge is equal to the potential at the location of the charge, V, times the charge, q:
The potential is given by the magnitude of the electric field, E, times the distance, d:
So we have
(1)
However, the electric field is equal to the electrical force F divided by the charge q:
Therefore (1) becomes
And if we use the data of the problem, we can calculate the electrical potential energy of the charge:
Answer:
<em><u>Assuming that the vertical speed of the ball is 14 m/s</u></em> we found the given values:
a) V₀ = 23.4 m/s
b) h = 27.9 m
c) t = 0.96 s
d) t = 4.8 s
Explanation:
a) <u>Assuming that the vertical speed is 14 m/s</u> (founded in the book) the initial speed of the ball can be calculated as follows:
<u>Where:</u>
: is the final speed = 14 m/s
: is the initial speed =?
g: is the gravity = 9.81 m/s²
h: is the height = 18 m
b) The maximum height is:
c) The time can be found using the following equation:
d) The flight time is given by:
I hope it helps you!