1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
motikmotik
3 years ago
7

One wire has a cross-sectional area of 1,250 cmil and a resistance of 7 ohms. A second piece of wire, identical except for cross

-sectional area, has a resistance of 10 ohms. Determine what the cross-sectional area of this second wire is. (Cross-sectional area and resistance are inversely proportional.)
Physics
1 answer:
Kruka [31]3 years ago
8 0

Answer:

875 cmil

Explanation:

Cross section area of wire=A_1=1250 cmil

Resistance of wire,R_1=7\Omega

R_2=10\Omega

We have to find the cross sectional area of second wire

We know that

R=\frac{\rho l}{A}

According to question

l_1=l_2=l,\rho_1=\rho_2=\rho

R_1=\frac{\rho l}{1250}

7=\frac{\rho l}{1250}....(1)

10=\frac{\rho l}{A}...(2)

Equation (1) divided by equation (2) then, we get

\frac{7}{10}=\frac{A}{1250}

A=\frac{7}{10}\times 1250=875cmil

Hence, the cross- sectional area of second wire=875 cmil

You might be interested in
Under which type of change would more organisms be able to survive? Why?
topjm [15]
The adaptation that is genetic change or mutatiton help makes an organism to survive better in their new environment. 
8 0
3 years ago
A mass of 0.5 kg hangs motionless from a vertical spring whose length is 1.10 m and whose unstretched length is 0.50 m. Next the
ser-zykov [4K]

Answer:

The maximum length during the motion is L_{max} = 1.45m

Explanation:

From the question we are told that

           The mass  is  m =0.5 kg

            The vertical spring  length is  L = 1.10m

            The unstretched  length is  L_{un} = 1.30m

          The initial speed is v_i = 1.3m/s

          The new length of the spring L_{new} =  1.30 m

The spring constant k is mathematically represented as

                           k = -\frac{F}{y}

Where F is the force applied  = m * g = 0.5 * 9.8=4.9N

           y is the difference in weight which is   =1.10-0.50=0.6m

The negative sign is because the displacement of the spring (i.e its extension occurs against the force F)

    Now  substituting values accordingly

                    k =  \frac{4.9}{0.6}

                       = 8.17 N/m

The  elastic potential energy is given as E_{PE} = \frac{1}{2} k D^2

  where D is this the is the displacement  

Since Energy is conserved the total elastic potential energy would be

             E_T = initial  \ elastic\ potential \ energy + kinetic \ energy

            E_T = \frac{1}{2} k D_{max}^2 =   \frac{1}{2} k D^2 + \frac{1}{2} mv^2

Substituting value accordingly

                \frac{1}{2} *8.17 *D_{max}^2 =\frac{1}{2} * 8.17*(1.30 - 0.50)^2 + \frac{1}{2} * 0.5 *1.30^2

                4.085 * D_{max}^2 = 3.69

                 D^2_{max} = 0.9033

                D_{max} = 0.950m

So to obtain total length we would add the unstretched length

 So we have

                  L_{max} = 0.950 + 0.5 = 1.45m

                               

               

               

                 

                     

5 0
3 years ago
Read 2 more answers
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
3 years ago
A microcomputer that is smaller, lighter, and less powerful than a notebook, and that has a touch sensitive screen, is called a
yKpoI14uk [10]
<span>A microcomputer that is smaller, lighter, and less powerful than a notebook, and that has a touch sensitive screen, is called a tablet. Tablets are used similarly to computers in the way that information can be stored, viewed and edited on them.</span>
8 0
3 years ago
The Netherlands controlled ______ for centuries <br><br> A. Vietnam<br> B. Malaysia<br> C. Indonesia
gogolik [260]
The Netherlands controlled Indonesia for centuries!
4 0
3 years ago
Read 2 more answers
Other questions:
  • Newton's cradle consists of an aligned row of identical elastic balls suspended by strings so they barely touch one another. whe
    10·1 answer
  • The atmospheric temperature decreases when snow starts melting because the snow------------------------- from the atmosphere to
    7·2 answers
  • A force that results from charged particles is called?
    14·2 answers
  • You need to get to class, which is 282 meters away. You can only walk in the hallway at about 2.0 m/s (if you go any faster, you
    15·1 answer
  • A column of soldiers, marching at 114 steps per minute, keep in step with the beat of a drummer at the head of the column. It is
    9·1 answer
  • A driver moves with initial velocity of 40m/s accelerates uniformly at a rate of 12m/s2.  It attains a velocity 52m/s. calculate
    12·1 answer
  • The sound of a tuba is very low. Why?
    14·1 answer
  • Two ice skaters are at rest, Abby
    5·2 answers
  • Can you help me please​
    6·1 answer
  • On which of the following is si based
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!