I think it is 1620 (lxwxh) x 10 to get to millimeters
The answer to this question is particles yes girl work slay that chem
Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ
Answer:
The reaction is exothermic
The temperature of the water bath goes up
Explanation:
An exothermic reaction is one in which energy flows out of the reaction system.
In this case, the system is the reaction vessel while the surrounding is the water bath. We see in the question that 300.1J of heat flows out of the system during the reaction. This is heat lost to the surroundings showing that the reaction is exothermic.
As energy is lost to the surroundings, the temperature of the water bath rises accordingly.
Glycolysis yields 2 ATP molecules, Krebs cycle yields 2 ATP molecules, ETS yields 34 ATP molecules.