Answer:
2.1 atm
Explanation:
We are given the following variables to work with:
Initial pressure (P1): 2.5 atm
Initial temperature (T1): 320 K
Final temperature (T2): 273 K
Constant volume: 7.0 L
We are asked to find the final pressure (P2). Since volume is constant, we want to choose a gas law equation that relates initial pressure and temperature to final pressure and temperature. Gay-Lussac's law does this:

We can rearrange the law algebraically to solve for
.

Substitute your known variables and solve:

Answer : The net ionic equation will be,

Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The same number of ions present on reactant and product side which do not participate in a reactions.
The given balanced ionic equation will be,
The ionic equation in separated aqueous solution will be,
In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,

The mass of water that will be needed to make the solution is calculated as below
% solution = mass of the solute/mass of the solvent(water) x100
% solution = 5% = 5/100
mass of the solute =0.377 g
mass of the solvent = ?
let the mass of the solvent be represented by Y
= 5/100 =0.377/y
by cross multiplication
5y= 37.7
divide both side by 5
y =7.54 grams
5CO2 should be in the blank spot.
the reaction would be 7
Answer:
The voltage or potential difference
Explanation:
What makes current flow in a circuit is the voltage or the potential difference.
This force is supplied by the battery or the mains electrical circuit.
- Every circuit requires the voltage to drive current through
- When a circuit is complete, the battery is able to overcome any resistance by the generating enough voltage which is the force to drive the current through.