Answer:
Conductors
Explanation:
Metals that are conductors let electric currents flow freely. Insulators have a resistance of a charge to flow through them.
Answer:
16.89g of PbBr2
Explanation:
First, let us calculate the number of mole of Pb(NO3)2. This is illustrated below:
Molarity of Pb(NO3)2 = 0.595M
Volume = 77mL = 77/1000 = 0.077L
Mole =?
Molarity = mole/Volume
Mole = Molarity x Volume
Mole of Pb(NO3)2 = 0.595x0.077
Mole of Pb(NO3)2 = 0.046mol
Convert 0.046mol of Pb(NO3)2 to grams as shown below:
Molar Mass of Pb(NO3)2 =
207 + 2[ 14 + (16x3)]
= 207 + 2[14 + 48]
= 207 + 2[62] = 207 +124 = 331g/mol
Mass of Pb(NO3)2 = number of mole x molar Mass = 0.046 x 331 = 15.23g
Molar Mass of PbBr2 = 207 + (2x80) = 207 + 160 = 367g/mol
Equation for the reaction is given below:
Pb(NO3)2 + CuBr2 —> PbBr2 + Cu(NO3)2
From the equation above,
331g of Pb(NO3)2 precipitated 367g of PbBr2
Therefore, 15.23g of Pb(NO3)2 will precipitate = (15.23x367)/331 = 16.89g of PbBr2
Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
Answer:
Acid(BSA) = CH₃COOH
Base (BSB) = H₂O
Conjugate base (CB) = CH₃COO⁻
Conjugate acid (CA) = H₃O⁺
Explanation:
Equation of reaction;
CH₃COOH + H₂O → CH₃COO⁻ + H₃O⁺
Hello,
From my understanding of the question, we are required to identify the
1) Acid
2) Base
3) conjugate acid
4) conjugate base in the reaction
Acid (BSA) = CH₃COOH
Base (BSB) = H₂O
CA = conjugate acid = H₃O⁺
CB = conjugate base = CH₃COO⁻
Answer:
Explanation:Although the term is quite new, our connection to nature is not. We depend on nature for our survival - without healthy ecosystems, our drinking water isn’t clean nor is the air we breathe. We also enjoy nature... studies show that people who spend time in nature tend to be happier than those that don’t. It can even act as a natural anti-depressant. With industry and urban sprawl expanding at unprecedented rates, Ecosystem Services attempt to translate the benefits we receive from nature into economic terms so we can better understand the trade-offs we are making between nature and industrial development.