Answer:
2.8
Explanation:
First, we will calculate the molarity of the acetylsalicylic acid solution.
M = mass of solute (g) / molar mass of solute × volume of solution (L)
M = 0.327 g / 180.158 g/mol × 0.237 L
M = 7.66 × 10⁻³ M
For a weak acid such as acetylsalicylic acid, we can find the concentration of H⁺ using the following expression.
[H⁺] = √(Ca × Ka)
where,
Ca: concentration of the acid
Ka: acid dissociation constant
[H⁺] = √(7.66 × 10⁻³ × 3.3 × 10⁻⁴)
[H⁺] = 1.6 × 10⁻³ M
The pH is:
pH = -log [H⁺]
pH = -log 1.6 × 10⁻³ = 2.8
Answer:
please mark brainlest and it's Procedure 1: One of the products was a gas that escaped into the air.
Procedure 2: A gas from the air reacted with one of the other reactants
Explanation:
the gas ca evaporate so it would'nt be a or c and b dosent make sense.
Answer:
Since molarity is defined as moles of solute per liter of solution, we need to find the number of moles of nitric acid, and the volume of solution.
molar mass of nitric acid (HNO3) = 1 + 14 + (3x16) = 15 + 48 = 63 g/mole
1.50 g/ml x 1000 ml = 1500 g/liter
1500 g/liter x 0.90 = 1350 g/liter of pure HNO3 (the 0.9 is to correct for the fact that it is 90% pure)
1350 g/liter x 1 mole/63 g = 21.43 moles/liter = 21 Molar HNO3
= 21 Molar of HNO3