1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
2 years ago
11

Explain 3 dangers of electrostatics in detail

Physics
1 answer:
Strike441 [17]2 years ago
4 0

Answer:

A lot of energy, meaning that they can produce electric shocks. This can literally stop or burn your heart.

Produce fire, explosions, etc.

They can also spoil mechanical materials or objects such as computers, lightning, etc.

Explanation:

You might be interested in
A single insulated duct flow experiment using air operating at steady-state is performed in a lab. One measurement location (Sta
weqwewe [10]

Answer:

a) -0.0934 kJ/kg. K

b) The direction of flow is from right to left.

Explanation:

A free flow diagram of the horizontal insulated duct is as shown below.

NOW,

Let assume that the direction of flow is from left to right and consider the following relation for the entropy rate balance equation for a control volume as:

\frac{\sigma_{cv}}{m}= (s_2-s_1) \geq  0 \ \ \ -------> \ \ \ 1

Now; if the value for this relation is greater than zero; then we conclude that our assumption is correct.

If the value is less than zero; then we conclude that the assumption is wrong.

Then, the flow is said to be  in the opposite direction

Formula for the change in specific entropy can be calculated as:

s_2-s_1 = s^0(T_2) - s^0(T_1)-R \ In ( \frac{P_2}{P-1}) \ \ \  ------->  \ \ \ 2

where;

s_1, s_2 , s^0(T_2), s^0(T1) are specific entropies

R = universal gas constant

P_1 = pressure at location 1

P_2 = pressure at location 2

We obtain the specific properties of air at temperature at T_1 = (67°C + 273)K = 340 K from the table A-22 ( Ideal gas properties of air)

s^0(T1) = 1.8279 kJ/kg.K

We also obtain the specific properties of air at temperature T_2 = 22°C + 273) K = 295 K

From the table A- 22

s^0(T_2) = 1.68515 kJ/kg . K

R = \frac{8.314 kJ}{28.97 kg.K}

P_1 = 0.95 bar

P_2 = 0.8 bar

Now replacing our values  into equation (2) from above; we have;

s_2-s_1 = s^0(T_2) -s^0(T_1)-R \ In (\frac{P_2}{P_1} )

s_2-s_1 = 1.68515 -1.8279-\frac{8.314}{28.97}  \ In (\frac{0.8}{0.95} )

s_2-s_1 = 1.68515 -1.8279+ 0.0493

s_2-s_1 =-0.0934 \  kJ/kg.K

Equating our result to equation (1)

s_2-s_1 \geq 0\\-0.0934 \leq 0

Therefore , our assumption is wrong and the direction of flow is said to be from right to left.

We therefore conclude that the direction of flow is from right to left.

3 0
3 years ago
A wave is produced from a vibrating string on a violin. Two observers are standing 20 m and 40 m away from the musician. The obs
max2010maxim [7]

Well the one that is closer can see and hear more

3 0
3 years ago
Differentiate scalar & vector quantity?
Keith_Richards [23]
\textbf{Hello Friend}


Scalar Quantity :-

→ These are the quantities with magnitude only . These quantities doesn't have to be mentioned with direction

eg.)=> Mass , Temprature .



Vector Quantity :-

→ These quantities are described with both Magnitude and Direction . These quantities follow special type of algebra called Vector algebra .


eg.)=> Force , Displacement






_______________________________



Hope It Helps You. ☺
5 0
3 years ago
outward from a wall just above floor level. A 1.5 kg box sliding across a frictionless floor hits the end of the spring and comp
sweet [91]

Answer:

v = 0.489 m/s

Explanation:

It is given that,

Mass of a box, m = 1.5 kg

The compression in the spring, x = 6.5 cm = 0.065 m

Let the spring constant of the spring is 85 N/m

We need to find the velocity of the box (v) when it hit the spring. It is based on the conservation of energy. The kinetic energy of spring before collision is equal to the spring energy after compression i.e.

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2

v=\sqrt{\dfrac{kx^2}{m}} \\\\v=\sqrt{\dfrac{85\times (0.065)^2}{1.5}} \\\\v=0.489\ m/s

So, the speed of the box is 0.489 m/s.

3 0
3 years ago
Radio wave radiation falls in the wavelength region of 10.0 to 1000 meters. What is the energy of radio wave radiation that has
dmitriy555 [2]

Answer:

Explanation:

Given

Wavelength of radiation \lambda =784\ m

We know Energy of wave with wavelength \lambda is given by

E=\frac{hc}{\lambda }

where h=Planck's constant

c=velocity of light

\lambda=wavelength of wave

E=\frac{6.626\times 10^{-34}\times 3\times 10^8}{784}

E=2.53\times 10^{-28}\ J

Hence the energy of the wave with wavelength 784 m is 2.53\times 10^{-28}\ J

7 0
3 years ago
Other questions:
  • How does conduction occur?
    9·1 answer
  • Why does the quantum mechanical description of many-electron atoms make it difficult to define a precise atomic radius?
    11·1 answer
  • The gravitational force between two objects is 3600 N. What will be the gravitational force between the objects if the mass of e
    14·1 answer
  • A 500-watt vacuum cleaner is plugged into a 120-volt outlet and used for 30 minutes. How much current runs through the vacuum?
    14·1 answer
  • You toss a racquetball directly upward and then catch it at the same height you released it 1.82 s later. assume air resistance
    9·1 answer
  • How does the use of a scanning electron microscope differ from that of a transmission electron microscope?. the options are....
    13·2 answers
  • A team of scientists wants to conduct a study on an endangered animal inthe wild. Which rule should the study follow in order to
    12·1 answer
  • Cuando es más confiable el valor central de una medición
    10·1 answer
  • A point charge of 4 µC is located at the center of a sphere with a radius of 25 cm. Find the electric flux through the surface o
    12·1 answer
  • A circuit contains four capacitors in parallel (10 F, 3 F, 7 F, and 1 F). What is the equivalent capacitance of this circuit?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!