Answer:
1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.
2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.
3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.
Explanation:
1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.
2) The charged particles on a conductor in equilibrium are at rest.
Answer:
F = 2.49 x 10⁻⁹ N
Explanation:
The electrostatic force between two charged bodies is given by Colomb's Law:

where,
F = Electrostatic Force = ?
k = colomb's constant = 9 x 10⁹ N.m²/C²
q₁ = charge on proton = 1.6 x 10⁻¹⁹ C
q₂ = second charge = 1.4 C
r = distace between charges = 0.9 m
Therefore,

<u>F = 2.49 x 10⁻⁹ N</u>
The strength of the electric and magnetic fields there is no physical "distance" of oscillation here. nothing is actually moving up and down if you draw light as a sinusoidal wave, the up and down motion is the strength of the EM fields cheers
Assuming motion is on a straight path, the result of two positive components of a vector would also be a positive value since both are having positive signs and directions. The direction would be the same with the motion as well. Hope this answers the question. Have a nice day.