Answer:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.
Answer:
3 units
Solution:
V=539 cubic units
Square base, with edge a=7 units
Slanted edge length: s=14 units
V=Ab h
Ab=49 square units
539 cubic units = (49 square units) h
h= 11 units
s-h=14 units-11 units
s-h=3 units
Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N
<span>Wedges is your answer please mark brainliest </span>
There are several information's of immense importance already given in the question. Based on the given information's the answer to the question can easily be determined.
Distance covered by the bicycle = 5000 meter
Time taken by the bicycle to reach the distance = 500 second.
Velocity of the bicycle = Distance / Time taken
= 5000/500 meter/second
= 50 meter/second
So the velocity of the bicycle is 50 meter per second. I hope the procedure is clear enough for you to understand. In future you can always use this procedure for solving similar problems.