Answer:5.13333333...
Explanation: 7.7 is the distance and an hour and a half is the average speed. You would have to divide the total distance by the total time. So it would be 7.7 divided by 1.5 which would equal 5.13333333333...
The minimum height h is 65m so that the car will not fall off the track at the top of the circular part of the loop.
<h3>What is mechanical energy?</h3>
Potential energy plus kinetic energy are combined to form mechanical energy. According to the principle of mechanical energy conservation, mechanical energy is constant in an isolated system when only conservative forces are acting on it. Potential energy increases when an object moves in the opposite direction of a conservative net force. Kinetic energy also changes as an object's speed, not velocity, changes. However, nonconservative forces, such as frictional forces, will always be present in real systems; however, if these forces are of minimal magnitude, mechanical energy changes little, making the idea of its conservation a reasonable approximation.
For completing the vertical circle the minimum speed at the bottom must be 
so conserving mechanical energy


⇒ h= 
h = 65m
To learn more about mechanical energy, visit:
brainly.com/question/24443465
#SPJ4
Answer:
Force required to accelerate = 794.44 N
Explanation:
Force required = Mass of horse x Acceleration of horse
Mass of horse and rider, m= 572 kg
Acceleration of horse and rider, a = 5 kph per second

Force required = ma
= 572 x 1.39 = 794.44 N
Force required to accelerate = 794.44 N
Answer:
Explanation:
Both these questions are based on the Universal Law of Gravitation, which is given by :
F = Gm1m2 / r²
2) F = 6.67 x 10⁻¹¹ x 8 x 10³ x 1.5 x 10³ / 1.5 x 1.5
F = 6.67 x 10⁻⁵ x 8 / 1.5
F = 35.57 x 10⁻⁵ N
3) F = 6.67 x 10⁻¹¹ x 7.5 x 10⁵ x 9.2 x 10⁷ / 7.29 x 10⁴
F = 6.67 x 10⁻³ x 7.5 x 9.2 / 7.29
F = 63.13 x 10⁻³ N