1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
7

Using the equation zeff=z−s and assuming that core electrons contribute 1.00 and valence electrons contribute 0.00 to the screen

ing constant, s, calculate zeff for the 2p electrons in both ions
Physics
2 answers:
aleksklad [387]3 years ago
7 0

The estimated effective nuclear charge experienced by a 2p electron of chlorine is \boxed{\text{7}}.

Further Explanation:

Effective Nuclear Charge:

It is the charge experienced by the outermost valence electrons of any many-electron atom. This is done by considering the number of shielding electrons that are present around the nucleus.

Slater’s Rule:

It is used to evaluate the effective nuclear charge experienced by an electron in the many-electron atom. According to this rule, the actual nuclear charge experienced by an electron is less than the actual nuclear charge due to screening by the other electrons present in the atom.

The electronic configuration is the distribution of electrons of an atom in the atomic orbitals.

The effective nuclear charge is calculated as follows:

{Z_{{\text{eff}}}} = Z - s                 ......(1)

Here,  

Z is the actual nuclear charge.

S is the screening constant.

In KCl compound, two ions are {{\text{K}}^ + } and {\text{C}}{{\text{l}}^ - }.

For {{\text{K}}^{\text{ + }}} ion,

The atomic number of potassium is 19. So its electronic configuration is \left( {1{s^2}} \right)\left( {2{s^2}2{p^6}} \right)\left( {3{s^2}3{p^6}} \right)\left( {4{s^1}} \right). For 2p orbital, outer shell electrons does not affects the inner shell electrons so the electrons in 3s, 3p, and 4s orbital can be neglected in order to calculate the {Z_{{\text{eff}}}} on a 2p electron. Thus the core electrons in {{\text{K}}^ + } ion are 2 and valance electrons are 8.

Since core electrons contribute 1.00 and valance electrons contribute 0.00 thus the formula to calculate the screening constant for a 2p electron is as follows:

s = \left[ {\left( {1.00} \right)\left( {{\text{Number of core electrons}}} \right) + \left( {0.00} \right)\left( {{\text{Number of valence electrons}}} \right)} \right]               ......(2)

Substitute 2 for the number of core electrons and 2 for the number of valence electrons in equation (2).

\begin{aligned}s&= \left[{\left({1.00}\right)\left( {\text{2}}\right)+\left( {0.00}\right)\left( {\text{8}}\right)} \right]\\&= 2\\\end{aligned}

Substitute 19 for Z and 2 for s in equation (1) to calculate the effective nuclear charge for a 2p electron in {{\text{K}}^ + } ion.

\begin{aligned}{Z_{{\text{eff}}}}&=19 - 2\\ &= 17\\\end{aligned}

So the estimated effective nuclear charge experienced by a 2p electron of {{\mathbf{K}}^{\mathbf{ + }}} ion is 17.

For {\text{C}}{{\text{l}}^ - } ion,

The atomic number of chlorine is 17. So its electronic configuration is \left( {1{s^2}} \right)\left( {2{s^2}2{p^6}} \right)\left( {3{s^2}3{p^5}} \right). For 2p orbital, outer shell electrons does not affects the inner shell electrons so the electrons in 3s and 3p orbital can be neglected in order to calculate the {Z_{{\text{eff}}}} on a 2p electron. Thus the core electrons in {\text{C}}{{\text{l}}^ - } ion are 2 and valance electrons are 8.

Substitute 2 for the number of core electrons and 2 for the number of valence electrons in equation (2).

\begin{aligned}s&= \left[{\left({1.00}\right)\left( {\text{2}}\right) + \left( {0.00}\right)\left({\text{8}}\right)} \right]\\&= 2\\\end{aligned}

Substitute 17 for Z and 2 for s in equation (1) to calculate the effective nuclear charge for a 2p electron.

\begin{aligned}{Z_{{\text{eff}}}}&= 17 - 2\\&=15\\\end{aligned}

So the estimated effective nuclear charge experienced by a 2p electron of chlorine is 15.

Learn more:

1. Calculation of the mass of 1 mole of viruses? brainly.com/question/8353774

2. Determine the moles of water produced: brainly.com/question/1405182

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Periodic properties of elements

Keywords: Slater’s rule, 2p electron, effective nuclear charge, chlorine, potassium, Cl-, K+, electronic configuration, 17, 19 and atomic number.

DIA [1.3K]3 years ago
5 0
Thank you for posting your question here at brainly. Below is the solution. I hope the answer will help. 

<span>Cl^- 1s^2 2s^2p^6 3s^2 3p^6 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 17- 10 =7 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6; 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 19- 10 = 9 
</span>
S = 2 + 6.8 + 2.45 = 11.25 
<span>Zeff(Cl^-) = 17 – 11.25 = 5.75 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6 same S as for Cl^- but Z increases by 2 hence </span>
<span>Zeff(K^+) = 19 - 11.25 = 7.75</span>
You might be interested in
A security guard walks at a steady pace traveling 170 m in one trip around the perimeter of a building.
WARRIOR [948]
Speed= distance/time
Speed= 170/230
Speed=0.74 m/s
6 0
3 years ago
A child with a weight of 230 N swings on a playground swing attached to 1.90 m long chains. What is the gravitational potential
nlexa [21]

Answer:

437 J

Explanation:

Parameters given:

Weight of child, W = 230 N

Height of swing, h = 1.9 m

Gravitational Potential Energy is given as:

P. E. = m*g*h = W*h

m = mass

h = height above the ground

W = weight

P. E. = 230 * 1.9

P. E. = 437 J

7 0
3 years ago
Read 2 more answers
Signal far enough ahead so other drivers in your vicinity can make adjustments to your change in speed and ___________.
3241004551 [841]

Answer:

DIRECTION

Explanation:

the answer of the blank will be DIRECTION

As the signal is far ahead so driver can make the decision of what he have to do either he can change direction or he can be on his same path.

But for that  driver has to change his or her speed.

so, from the statement given the blank will be filled with DIRECTION

8 0
3 years ago
An object with a mass of 10 kg is accelerated upward at 2 m/sec2. What force is required?
telo118 [61]

Answer:

Answer: Given m = 10 kg and . F = 20 N. Thus, the force required to accelerate the object upward direction is 20 N.

Explanation:

Answer: Given m = 10 kg and . F = 20 N. Thus, the force required to accelerate the object upward direction is 20 N.

6 0
3 years ago
what is the potential energy of the ball when it gets to its maximum height just before falling back to the ground​
love history [14]

Answer:

I will say that the the potential energy will be at its maximum.

Explanation:

potential energy deals with gravity and gravity deals with height, so when a object is in its maximum height it will have the maximum potential energy.  

6 0
3 years ago
Other questions:
  • Two vectors A and B are added together to form a vector C. The relationship between the magnitudes of the vectors is given by A
    6·1 answer
  • A circuit is built based on this circuit diagram. What is the equivalent resistance of the circuit?
    6·1 answer
  • Carbon-14 is a naturally-occuring, stable isotope that is commonly used is scientific studies as a tracer and to date artifacts.
    13·2 answers
  • What kind of frequency does long shift waves have?
    5·1 answer
  • Why electrons carry a net energy but not a net a current in case of thermal conduction
    10·1 answer
  • Which list places the layers of the sun in the correct order from outermost to innermost?
    12·1 answer
  • An LDR was placed near a light source. The following results were
    13·1 answer
  • You get points!! IMPORTANT
    11·2 answers
  • Every rock that you find must be or have at one time been a/an​
    15·1 answer
  • What process builds organic molecules such as sucrose by taking water away?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!