Answer:
<h3>Yes</h3>
Explanation:
If you build thing "a" and thing "a" builds thing "b" you <u>indirectly</u> build thing "b".
Answer:
1) the final temperature is T2 = 876.76°C
2) the final volume is V2 = 24.14 cm³
Explanation:
We can model the gas behaviour as an ideal gas, then
P*V=n*R*T
since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:
P*V^k = constant = C, k= adiabatic coefficient for air = 1.4
then the work will be
W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)
W = (P1*V1/T1)*(T2-T1)/(1-k)
T2 = (1-k)W* T1/(P1*V1) +T1
replacing values (W=-450 J since it is the work done by the gas to the piston)
T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C
the final volume is
TV^(k-1)= constant
therefore
T2/T1= (V2/V1)^(1-k)
V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³
Answer:
A) 0.03382 kg/s
B) 7.0372 Kw
C) 4.3982
D) 0.7396 kw
Explanation:
Given data:
Evaporator at 60 C
Space temperature = 25 C
power consumed by compressor = 1.6 kw
T1( evaporator temperature ) = 12°C
attached below is the detailed solution
Answer: hello the diagram related to your question is missing please the third image is the missing part of the question
Fx = 977.76 Ib/ft
Explanation:
<u>Estimate the force that water exerts on the pier </u>
V = 12 ft/s
D( diameter ) = 6 ft
first express the force on the first half of the cylinder as
Fx1 = -
---------------- ( 1 )
where ; Fy = 0
Ps = Po + 1/2 Pv^2 ( 1 - 4 sin^2β ) ------------- ( 2 )
Input equation (2) into equation ( 1 ) (note : assuming Po = 0 )
attached below is the remaining part of the solution
Answer:
the hurts my brain sorry bud cant help
Explanation: