Answer:
exit temperature 285 K
Explanation:
given data
temperature T1 = 270 K
velocity = 180 m/s
exit velocity = 48.4 m/s
solution
we know here diffuser is insulated so here heat energy is negleted
so we write here energy balance equation that is
0 = m (h1-h2) + m ×
.....................1
so it will be
.....................2
put here value by using ideal gas table
and here for temperature 270K
h1 = 270.11 kJ/kg
solve it we get
h2 = 285.14 kJ/kg
so by the ideal gas table we get
T2 = 285 K
Answer:
Explanation:
We can solve Von Karman momentum integral equation as seen below using following in the attached file
Answer:
a) 199.04 ohms
b) attached in image
c) -0.696dB
Explanation:
We are given:
Fc = 8Khz = 8000hz

a)Using the formula:



R = 199.04 ohms
b) diagram is attached
c) 

At F = 20KHz and Fc= 8KHz we have:


=0.923
|H(F)| in dB = 20log |H(F)|
=20log0.923
= -0.696dB
Answer:

Explanation:
Lets take the numerator of the fraction to be = x
So the denominator of the fraction is 4 more than the numerator = x+4
The fraction is ;
Now add 4 to the numerator and add 7 to the denominator as;

This new fraction is equal to 1 half =1/2
write the equation as;

perform cross-product
2(x+4 )=1( x+11 )
2x+8 = x + 11
2x-x = 11-8
x=3
The original fraction is;
