1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
2 years ago
8

A(n) __________ refers to a substance or treatment that is often used in an experiment but does not have an actual medicinal or

experimental benefit. A. Extraneous variable B. Placebo C. Confounding variable D. Independent control Please select the best answer from the choices provided A B C D.
Physics
2 answers:
dimaraw [331]2 years ago
6 0

Answer:

A __placebo (B)___ refers to a substance or treatment that is often used in an experiment but does not have an actual medicinal or experimental benefit.

Explanation:

Got it right on EDGE2022

kipiarov [429]2 years ago
3 0

Answer:

A placebo refers to a substance or treatment that is often used in an experiment but does not have an actual medicinal or experimental benefit.

Explanation:

You might be interested in
Gravitational notes of physics ​
Pachacha [2.7K]

Answer:

Every object in the universe attracts other object by a force of attraction, called gravitation, which is directly proportional to the product of masses of the objects and inversely proportional to the square of distance between them. This is called Law of Gravitation or Universal Law of Gravitation.

Let masses (M) and (m) of two objects are distance (d) apart. Let F be the attractional force between two masses.

Importance of The Universal Law of Gravitation

It binds us to the earth.

It is responsible for the motion of the moon around the earth.

It is responsible for the motion of planets around the Sun.

Gravitational force of moon causes tides in seas on earth.

Free Fall

When an object falls from any height under the influence of gravitational force only, it is known as free fall.

Acceleration Due to Gravity

When an object falls towards the earth there is a change in its acceleration due to the gravitational force of the earth. So this acceleration is called acceleration due to gravity.

The acceleration due to gravity is denoted by g.

The unit of g is same as the unit of acceleration, i.e., ms−2

Mathematical Expression for g

From the second law of motion, force is the product of mass and acceleration.

F = ma

For free fall, acceleration is replaced by acceleration due to gravity.

Therefore, force becomes:

F = mg ….(i)

But from Universal Law of Gravitation,

Factors Affecting the Value of g

As the radius of the earth increases from the poles to the equator, the value of g becomes greater at the poles than at the equator.

As we go at large heights, value of g decreases.

To Calculate the Value of g

Value of universal gravitational constant, G = 6.7 × 10–11 N m2/ kg2,

Mass of the earth, M = 6 × 1024 kg, and

Radius of the earth, R = 6.4 × 106 m

Putting all these values in equation (iii), we get:

Thus, the value of acceleration due to gravity of the earth, g = 9.8 m/s2.

Difference between Gravitation Constant (G) and Gravitational Acceleration (g)

S. No.

Gravitation Constant (G)

Gravitational acceleration (g)

1.

Its value is 6.67×10-11Nm2/kg2.

Its value is 9.8 m/s2.

2.

It is a scalar quantity.

It is a vactor quantity.

3.

Its value remains constant always and everywhere.

Its value varies at various places.

4.

Its unit is Nm2/kg2.

Its unit is m/s2.

Motion of Objects Under the Influence of Gravitational Force of the Earth

Let an object is falling towards earth with initial velocity u. Let its velocity, under the effect of gravitational acceleration g, changes to v after covering the height h in time t.

Then the three equations of motion can be represented as:

Velocity (v) after t seconds, v = u + ght

Height covered in t seconds, h = ut + ½gt2

Relation between v and u excluding t, v2 = u2 + 2gh

The value of g is taken as positive in case of the object is moving towards earth and taken as negative in case of the object is thrown in opposite direction of the earth.

Mass & weight

Mass (m)

The mass of a body is the quantity of matter contained in it.

Mass is a scalar quantity which has only magnitude but no direction.

Mass of a body always remains constant and does not change from place to place.

SI unit of mass is kilogram (kg).

Mass of a body can never be zero.

Weight (W)

The force with which an object is attracted towards the centre of the earth, is called the weight of the object.

Now, Force = m × a

But in case of earth, a = g

∴ F = m × g

But the force of attraction of earth on an object is called its weight (W).

∴ W = mg

As weight always acts vertically downwards, therefore, weight has both magnitude and direction and thus it is a vector quantity.

The weight of a body changes from place to place, depending on mass of object.

The SI unit of weight is Newton.

Weight of the object becomes zero if g is zero.

Weight of an Object on the Surface of Moon

Mass of an object is same on earth as well as on moon. But weight is different.

Weight of an object is given as,

Hence, weight of the object on the moon = (1/6) × its weight on the earth.

Try the following questions:

Q1. State the universal law of gravitation.

Q2. When we move from the poles to the equator, the value of g decreases. Why?

Q3. If two stones of 150 gm and 500 gm are dropped from a height, which stone will reach the surface of the earth first and why ?

Q4. Differentiate between weight and mass.

Q5. Why is the weight of an object on the moon 1/6th its weight on the earth??

7 0
3 years ago
What two types of atoms make a Covalent bond
dalvyx [7]

Ionic bonds are formed between a cation (metal) and an anion (nonmetal)
4 0
3 years ago
An airplane was 300 km [N] of Toronto airport, 3 hours later the airplane 600 km [S]
Alecsey [184]

Answer:

Explanation:

a) 300 + 600 = 900 km S

b) 900/3 = 300 km/hr S

8 0
3 years ago
A swimming pool has the shape of a right circular cylinder with radius 21 feet and height 10 feet. Suppose that the pool is full
AysviL [449]

Answer:

The water required to pump all the water to a platform 2 feet above the top of the pool is  is 6061310.32 foot-pound.

Explanation:

Given that,

Radius = 21 feet

Height = 10 feet

Weighing = 62.5 pounds/cubic

Work = 4329507.37572

Height = 2 feet

Let's look at a horizontal slice of water at a height of h from bottom of pool

We need to calculate the area of slice

Using formula of area

A=\pi r^2

Put the value into the formula

A=\pi\times21^2

A=441\pi\ feet^2

Thickness of slice t=\Delta h\ ft

The volume is,

V=(441\pi\times\Delta h)\ ft^3

We need to calculate the force

Using formula of force

F=W\times V

Where, W = water weight

V = volume

Put the value into the formula

F=62.5\times(441\pi\times\Delta h)

F=27562.5\pi\times\Delta h\ lbs

We need to calculate the work done

Using formula of work done

W=F\times d

Put the value into the formula

W=27562.5\pi\times\Delta h\times(10-h)\ ft\ lbs

We do this by integrating from h = 0 to h = 10

We need to find the total work,

Using formula of work done

W=\int_{0}^{h}{W}

Put the value into the formula

W=\int_{0}^{10}{27562.5\pi\\times(10-h)}dh

W=27562.5\pi(10h-\dfrac{h^2}{2})_{0}^{10}

W=27562.5\pi(10\times10-\dfrac{100}{2}-0)

W=4329507.37572

To pump 2 feet above platform, then each slice has to be lifted an extra 2 feet,

So, the total distance to lift slice is (12-h) instead of of 10-h

We need to calculate the water required to pump all the water to a platform 2 feet above the top of the pool

Using formula of work done

W=\int_{0}^{h}{W}

Put the value into the formula

W=\int_{0}^{10}{27562.5\pi\\times(12-h)}dh

W=27562.5\pi(12h-\dfrac{h^2}{2})_{0}^{10}

W=27562.5\pi(12\times10-\dfrac{100}{2}-0)

W=1929375\pi

W=6061310.32\ foot- pound

Hence, The water required to pump all the water to a platform 2 feet above the top of the pool is  is 6061310.32 foot-pound.

8 0
3 years ago
Calculate the propellant mass required to launch a 2000 kg spacecraft from a 180 km circular orbit on a Hohmann transfer traject
Finger [1]

Answer:

t = 12,105.96 sec

Explanation:

Given data:

weight of spacecraft is 2000 kg

circular orbit distance to saturn = 180 km

specific impulse = 300 sec

saturn orbit around the sun R_2 = 1.43 *10^9 km

earth orbit around the sun R_1= 149.6 * 10^ 6 km

time required for the mission is given as t

t = \frac{2\pi}{\sqrt{\mu_sun}} [\frac{1}{2}(R_1 + R_2)]^{3/2}

where

\mu_{sun} is gravitational parameter of sun =  1.32712 x 10^20 m^3 s^2.t = \frac{2\pi}{\sqrt{ 1.32712 x 10^{20}}} [\frac{1}{2}(149.6 * 10^ 6 +1.43 *10^9 )]^{3/2}

t = 12,105.96 sec

6 0
3 years ago
Other questions:
  • A drag racer crosses the finish line doing 212 mi/h and promptly deploys her drag chute. (A.) what force must the drag chute exe
    9·1 answer
  • a train travels 81 kilometers in 2 hours and then 88 kilometers in 2 hours what is its average speed​
    5·1 answer
  • How do you the average speed
    15·1 answer
  • If a battery is running down, a light bulb in the circuit will become dimmer because when voltage drops
    7·1 answer
  • When a car’s velocity is negative and its acceleration is negative, what is happening to the car’s motion?
    7·1 answer
  • Help Me Please<br>8th grade science, one question ​
    14·1 answer
  • In a model of the solar system that was about as large as a college campus how large would the Sun be?
    6·1 answer
  • which research model refers to the study of an individual group or community over a predetermined period
    10·1 answer
  • 5. is the earth’s magnetic field parallel to the ground at all locations? if not, where is it parallel to the surface? is its st
    11·1 answer
  • 6. If a drag racer wins the final round of herrace by going an average speed of 320 m/sin 4.5 seconds, what distance did he cove
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!