The displacement of the object as determined from the velocity-time graph is 562.5 m.
<h3>What is a velocity-time graph?</h3>
A velocity-time graph is a graph of the velocity of an object plotted in the vertical or y-axis of the graph against the time taken on the horizontal or x-axis.
The displacement of an object can be obtained from its velocity-time graph by calculating the total area under the graph.
The total area under the graph = area of triangle + area of rectangle
Area of triangle = b*h/2 =
Area of triangle = 25 * (35 - 10)/2 = 312.5 m
Area of rectangle = l * b
Area of rectangle = 10 * 25 = 250 m
Total area = (312.5 + 250) m
Total area = 562.5 m
Therefore, the displacement of the object is 562.5 m
In conclusion, the total area of a velocity-time graph gives the displacement.
Learn more about velocity-time graph at: brainly.com/question/28064297
#SPJ1
Answer:
the type of tomato plants used.
Explanation:
A very small source of light that radiates uniformly in all directions produces an electric field with an amplitude of ܧ at a distance R from the source. What is the amplitude of the magnetic field at a point 2R from the source?
If the distance from the source is doubled. The amplitude of the magnetic field is smaller 4 times.
Answer:
The helicopter was deformed and destroyed in the inelastic collision.
Explanation:
- When two object collide there exist two way of colliding: elastic collision and inelastic collision.
- Two terms are considered during the collision: kinetic energy and momentum.
- If both of these terms are conserved in any collision then there is no significant loss of property, this is called as elastic collision.
- If only momentum is conserved but kinetic energy is converted into other forms then it is inelastic collision. In inelastic collision, the energy is lost in the form of vibration, sound etc. causing the damage to colliding object.
- Hence the deformation of helicopter was due to inelastic collision.
Answer:

Explanation:
The maximum speed of the block occurs when spring has no deformation, that is, there is no elastic potential energy, which can be remarked from appropriate application of the Principle of Energy Conservation:


