Answer:
Explanation:
Given
mass of sphere 
diameter of sphere 
radius 

friction will provide resisting torque so
where 







(b)time taken to decrease its rotational speed by 



Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)
Answer:
I do not believe so.
Explanation:
We have not advanced that far yet in our society.
Answer:
1160 ohm
Explanation:
We are given that
R'=580 ohm
Current=3 I
We have to find the resistance of the circuit.
Let R be the resistance of circuit.
In parallel

Using the formula


In parallel combination,Potential difference across each resistance remains same.

Using the formula




Hearing test provides an evaluation of the sensitivity of a person's sense of hearing and is most often performed by an audiologist using an audiometer. An audiometer is used to determine a person's hearing sensitivity at different frequencies.