Answer: option A. r = 3x+2y
Explanation:
Vector r is plotted on the graph. On x-axis each small division corresponds to 1 unit. Similarly on y-axis, each small division corresponds to one unit.
The vector is the resultant of addition of its x and y components. we would draw perpendicular to the x-axis and y-axis from the head of vector r.
On x-axis,
= +3 units
on y-axis,
= +2 units

Hence, vector r can be written as: r = 3x + 2y . Correct option is A.
I believe it is called or referred to as the "Jet Stream". During World War II, allied pilots encountered high speed winds in the upper air. They named those winds after the fastest planes they came up against: fighters equipped with jet engines! Jet stream winds in winter time can reach up to 300 MPH as well!
Answer: Average Velocity = - 643.42 i + 512.66 j m/s
Magnitude = 822.7 m/s
Direction = 141.45°
Explanation:
r = 3.84 x 10^8 m
w = 2.46 x 10^-6 rad/s
Formula for Average velocity = displacement / time
at t = 0
x(0) = r
y(0) = 0
at t = 8.45 days
= 8.45 x 24 x 3600 s =730080 sec
w t = 2.46 x 10^-6 x 730080 = 1.80 rad Or 102.90°
xf = r cos(w t) = - 0.2233r
yf = r sin(w t) = 0.9747r
Displacement = (xf - x0)i + (yf - y0)j = -1.2233r i + 0.9747r j
<v> = dispalcement / t = (-1.2233r i + 0.9747r j ) / (730080 s )
= - 643.42 i + 512.66 j m/s
Magnitude
= sqrt(643.42^2 + 512.66^2)
= 822.7 m/s
Direction
= 180 - tan^-1(512.66 / 643.42)
= 141.45°
Answer:
Fusion
Fission
Explanation:
The first problem describes a nuclear fusion process. In this process;
- small atomic nuclei combines to form a larger one.
- it is accompanied by a large release of energy
- this energy provides the needed temperature to set up another light nuclei to fuse.
The second problem describes nuclear fission,
- a heavy nuclide is bombarded with a neutron.
- the product formed becomes unstable and subsequently breaks down.
- This leads to a series of chain reactions until stability is attained.