Answer:
Difference between heat and temperature in tabular form
Heat vs Temperature
1.Heat is a form of energy that can transfer from a hot body to a cold body. and Temperature is the degree of hotness and coldness of a body.
2.Heat is the total kinetic energy and potential energy obtained by molecules in an object. and Temperature is the average K.E of molecules in a substance.
3.Heat flows from hot body to cold body. It rises when heated and falls down when an object is cooled down and It has a working ability. It does not have the working ability
.
4.Its SI unit is “Joule” and Its SI unit is “Kelvin”.
5.It is measured by the calorimeter and It is measured by the thermometer
.
6.It is represented by “Q”. and It is represented by “T”.
Explanation:
A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. ... A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber.
Answer:
i dont know
Explanation:
cuz i dont know what it wrote its too blurry
Answer:
From the outside human arms, bird wings, and bats wings look very different. Humans are covered in skin, birds are covered in feathers, and bats are covered in hair. But on the inside there are many similarities among human, bird, and bat forearms. Did you know that humans, birds, and bats have the exact same types of bones in their forearm? These organisms share the same forearm bones because they all evolved from a common ancestor.
Human, bird, and bat forearm bones include the humerus, ulna, radius, carpals, metacarpals, and phalanges.
~i hope this helps~
Answer:
Since the net force is to the right (in the direction of the applied force), then the applied force must be greater than the friction force. The friction force can be determined using an understanding of net force as the vector sum of all the forces.
Explanation:
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.