Answer:
V at C is 3.6 m/s
Explanation:
At A kinetic energy is zero and potential energy=mgh=0.5*9.81*0.6=2.943 J
By conservation of energy.
KE+PE=Constant
At C PE=0.6 J
the KE=2.943-0.6=2.343 J
KE=0.5*m*v^2
v=√[KE/(0.5*m)]=3.06 m/s
Answer:
Epx= - 21.4N/C
Epy= 19.84N/C
Explanation:
Electric field theory
The electric field at a point P due to a point charge is calculated as follows:
E= k*q/r²
E= Electric field in N/C
q = charge in Newtons (N)
k= electric constant in N*m²/C²
r= distance from load q to point P in meters (m)
Equivalences
1nC= 10⁻⁹C
known data
q₁=-2.9nC=-2.9 *10⁻⁹C
q₂=5nC=5 *10⁻⁹C
r₁=0.840m



Calculation of the electric field at point P due to q1
Ep₁x=0

Calculation of the electric field at point P due to q2


Calculation of the electric field at point P(0,0) due to q1 and q2
Epx= Ep₁x+ Ep₂x==0 - 21.4N/C =- 21.4N/C
Epy= Ep₁y+ Ep₂y=36.95 N/C-17.11N =19.84N/C
<span>Let's put it this way. Say you have a killer-whale and a penguin. Killer-whales are major predators to penguins. Now, say the killer-whale population increases. The penguins would be eaten more by the killer-whales, then causing a population decrease for the penguins. If the population decreases, they're won't be enough penguins, and they most likely will become extinct, as well as causing a population decrease for the killer-whales as well. Whereas, vis versa, they're were a killer-whale population decrease. The penguins would be less hunted, therefore, creating a population increase for the penguins.</span>
I think you forgot to give the choices along with the question. I am answering the question based on my knowledge and research. You would increase mechanical advantage by <span>making the blade longer from the cutting edge. I hope that this is the answer that has actually come to your desired help.</span>