Answer:
The magnitude of the maximum possible torque exerted on the coil is 5.73 x 10⁻³ Nm
Explanation:
Given;
number of turns of the circular coil, N = 49.5 turns
radius of the coil, r = 5.10 cm = 0.051 m
magnitude of the magnetic field, B = 0.535 T
current in the coil, I = 26.5 mA = 0.0265 A
The magnitude of the maximum possible torque exerted on the coil is calculated as;
τ = NIAB
where;
A is the area of the coil
A = πr² = π(0.051)² = 0.00817 m²
Substitute the given values and solve for the maximum torque
τ = (49.5) x (0.0265) x (0.00817) x (0.535)
τ = 0.00573 Nm
τ = 5.73 x 10⁻³ Nm
I'm going to assume this is over a horizontal distance. You know from Newton's Laws that F=ma --> a = F/m. You also know from your equations of linear motion that v^2=v0^2+2ad. Combining these two equations gives you v^2=v0^2+2(F/m)d. We can plug in the given values to get v^2=0^2+2(20/3)0.25. Solving for v we get v=1.82 m/s!
From the calculations, the value of the acceleration due to gravity is 0.38 m/s^2.
<h3>What is weight?</h3>
The weight of an object is obtained as the product of the mass of the body and the acceleration due to gravity.
Thus;
When;
mass = 120 kg
weight = 46 N
acceleration due to gravity = 46 N/120 kg
=0.38 m/s^2
Learn more about acceleration due to gravity :brainly.com/question/13860566
#SPJ1
Answer:
v =
m/s
Explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

The velocity vector v is the first derivative of the position vector r with respect to time:
![\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%5Bvcos%28%5Comega%20t%29-%5Comega%20vtsin%28%5Comega%20t%29%5D%5Chat%7Bx%7D%2B%5Bvsin%28%5Comega%20t%29%2B%5Comega%20vtcos%28%5Comega%20t%29%5D%5Chat%7By%7D)
The given values are:

