Answer and Explanation:
• 1 thread awaits the incoming request
• 1 thread responds to the request
• 1 thread reads the hard disk
A multithreaded file server is better than a single-threaded server and a finite-state machine server because it provides better response compared to the rest and can make use of the shared Web data.
Yes, there are circumstances in which a single-threaded server might be better. If it is designed such that:
- the server is completely CPU bound, such that multiple threads isn't needed. But it would account for some complexity that aren't needed.
An example is, the assistance number of a telephone directory (e.g 7771414) for an community of say, one million people. Consider that each name and telephone number record is sixty-four characters, the whole database takes 64 MB, and can be easily stored in the server's memory in order to provide quick lookup.
NOTE:
Multiple threads lead to operation slow down and no support for Kernel threads.
Answer:
hmm i would try calling him. ask your mom or other adults where he is!
Explanation:
hope you get help soon!
A model of living systems as whole entities which maintain themselves through continuous input and output from the environment, developed by ludwig von bertalanffy is known as Systems theory.
<h3>
what are the application of systems theory?</h3>
It is a theoretical framework to understand the working mechanism of an organization.
It is an entity where all the elements necessary to carry out its functions.
A computer is the best example of showing the mechanism of system theory.
computer is a system which has many smaller sub-systems that have to work in coordinated manner.
These sub-systems are the processor, RAM, motherboard, hard drive and power supply.
Learn more about systems theory , here:
brainly.com/question/28278157
#SPJ4
Answer:
178 kJ
Explanation:
Assuming no heat transfer out of the cooling device, and if we can neglect the energy stored in the aluminum can, the energy transferred by the canned drinks, would be equal to the change in the internal energy of the canned drinks, as follows:
ΔU = -Q = -c*m*ΔT (1)
where c= specific heat of water = 4180 J/kg*ºC
m= total mass = 6*0.355 Kg = 2.13 kg
ΔT = difference between final and initial temperatures = 20ºC
Replacing by these values in (1), we can solve for Q as follows:
Q = 4180 J/kg*ºC * 2.13 kg * -20 ºC = -178 kJ
So, the amount of heat transfer from the six canned drinks is 178 kJ.