Let's break this down. We know from our balanced equation that (in theory) we'll get the same number of moles of copper out of the reaction that we put into it. So we need to find the number of moles of CuSO4 we have in 200.0 grams. Using the molar mass of CuSO4:
200.0 grams CuSO4 * (1 mole CuSO4)/(159.61 grams CuSO4) =
1.253 moles CuSO4
We know that the moles of CuSO4 and Cu are one-to-one, so we should yield the same number of moles of copper. If we multiply by copper's molar mass, we get:
1.253 moles Cu * (63.55 grams Cu)/(1 mole Cu) = 79.63 grams Cu
Answer:
D has to be based on facts so d would be the answer and idea that can only be proven true those are facts not hypothesis or guesses
Explanation:
based on a body of facts that have been repeatedly confirmed through observation and experiment. Such fact-supported theories are not "guesses" but reliable accounts of the real world."
Answer:
Each element consists of indivisible, minute particles called atoms.
All atoms of a given element are identical.
Atoms of different elements have different masses.
Explanation:
Answer:
The volume will be 568.89 mL.
Explanation:
Boyle's law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases. That is, the pressure of the gas is directly proportional to its temperature. Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
Finally, Charles's law indicates that as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. In summary, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:
Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Studying an initial state 1 and a final state 2, it is fulfilled:

In this case:
- P1= 960 mmHg
- V1= 550 mL
- T1= 200 C= 473 K (being 0 C=273 K)
- P2= 830 mmHg
- V2= ?
- T2= 150 C= 423 K
Replacing:

Solving:

V2= 568.9 mL
<u><em>The volume will be 568.89 mL.</em></u>
The answer is B.) stable ... all any atom wants to do is bond with a nother to share or take electrons to have a full valence shell