To determine which order of the reaction it is, first we need to calculate the rate of change of moles.
the data is as follows
time 0 40 80 120 160
moles 0.100 0.067 0.045 0.030 0.020
Q1)
for the first 40 s change of moles ;
= -d[A] / t
= - (0.067-0.100)/40s
= 8.25 x 10⁻⁴ mol/s
for the next 40 s
= -(0.045-0.067)/40
= 5.5 x 10⁻⁴ mol/s
the 40 s after that
= -(0.030-0.045)/40 s
= 3.75 x 10⁻⁴ mol/s
k - rate constant
and A is the only reactant that affects the rate of the reaction
rate = k [A]ᵇ
8.25 × 10⁻⁴ mol/s = k [0.100 mol]ᵇ ----1
5.5 x 10⁻⁴ mol/s = k [0.067 mol]ᵇ -----2
divide the 2nd equation by the 1st equation
1.5 = [1.49]ᵇ
b is almost equal to 1
Therefore this is a first order reaction
Q2)
to find out the rate constant(k), we have to first state the equation for a first order reaction.
rate = k[A]ᵇ
As A is the only reactant thats considered for the rate equation.
Since this is a first order reaction,
b = 1
therefore the reaction is
rate = k[A]
substituting the values,
8.25 x 10⁻⁴ mol/s = k [0.100 mol]
k = 8.25 x 10⁻⁴ mol/s /0.100mol
= 8.25 x 10⁻³ s⁻¹
Answer:
volume of 
Explanation:
Firstly balance the given chemical equation,

From the given balance equation it is clearly that,
2 mole of Li gives 1 mole of H2 gas
⇔
⇔
⇔
hence
3 mole of Li will give 1.5 mole H2 gas
therefore volume of gas produced from 3 mole Li at 
volume of H2=33.6 litre
Answer :
The number of bonding pairs of electrons around the hydrogen atom = 2
The number of lone pairs of electrons around the hydrogen atom = 0
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons, hydrogen has '1' valence electrons and nitrogen has '5' valence electrons.
Therefore, the total number of valence electrons in
= 1 + 4 + 5 = 10
According to Lewis-dot structure we conclude that, there are 8 number of bonding electrons and 2 number of non-bonding electrons.
The number of bonding pairs of electrons around the hydrogen atom = 2
The number of lone pairs of electrons around the hydrogen atom = 0