The complete question is;
The gravitational force between two objects is ______ proportional to the products of the masses and _______ proportional to the square of the distance between them.
Answer:
First dash is directly
Second dash is inversely
Explanation:
From Newton's law of gravitation the gravitational force is given by the equation;
F = GMm/r²
Where:
F is gravitational force
M and m are two masses representing the two objects
r is the distance between them
G = universal gravitational constant
Thus, if we are to write it in proportion format, we will have;
F ∝ Mm/r²
From this proportion relationship, we can see that the Gravitational force is directly proportional to the products of the two masses and inversely proportional to the square of the distance between them.
The radius R of the turn is 1.984 km.
<u>Explanation:</u>
As the falcon is experiencing a centripetal motion, the acceleration exhibited by the falcon will be centripetal acceleration. The formula for centripetal acceleration is

Here a is the acceleration for centripetal motion, v is the velocity and R is the radius of the circular path.
As the centripetal acceleration is given as 0.6 g, the velocity is given as 108 m/s, then the radius of the path can be determined as


So, the radius of the turn is 1.984 km.
Answer:
A ) SOLID SPHERE
Explanation:
Moment of inertia of solid sphere = 2/5 M R²
= M K² , K is called radius of gyration
K = √2/5 R
Moment of inertia of solid cylinder = 1/2 M R²
= M K² , K is called radius of gyration
K = 1 /√2 R
Moment of inertia of solid sphere = M R²
= M K² , K is called radius of gyration
K = R
For rolling on inclined plane , acceleration
a = 
Putting the value of K for solid sphere
a for solid sphere
a = g sinθ / ( 1 +2/5)
a = .714 g sinθ
Putting the value of K for solid cylinder
a for solid cylinder
a = g sinθ / ( 1 +1/2)
a = .666 g sinθ
Putting the value of K for hollow pipe
a for hollow pipe
a = g sinθ / ( 1 +1 )
a = . 5 g sinθ
So we see that acceleration a for solid sphere is greatest and a for hollow pipe is the least. Hence solid sphere will reach the bottom earliest and hollow pipe will reach the bottom the latest.