Answer:
The submerged effective density is 86.93 kN/m³ or 8.693 Mg/m³
Explanation:
Given;
wet density of soil sample = 2.5 Mg/m³ = 25 kN/m³
Specific gravity of solid particle = 2.7
The dry unit weight of soil;

for undisturbed state, the volume of the soil is;


Submerged effective density is given as;

density of water (ρw) = 2.7 x 25 kN/m³ = 67.5 kN/m³, substitute this in the above equation;

Therefore, the submerged effective density is 86.93 kN/m³ or 8.693 Mg/m³
Answer:
2.5 m/s²
Explanation:
You can solve the following equation: F=ma for acceleration.
You'll be left with this:
a=F/m
And then you substitute the force and the doubled mass
a=500N/200kg
a=2.5 m/s²
Frequency = rate of sploosh = 2 per second = 2 Hz.
Period = ( 1/frequency ) = 1/2 second
Speed = (wavelength) x (frequency) = (0.15m) x ( 2/sec) = 0.075 m/s .
Answer:
T = 2.4 + 2.4 = 4.8 [s]
Explanation:
In order to solve this problem, we must use the following kinematics equation and calculate the acceleration value.

Vo = inital velocity = 0
x - xo = 15 [m]
t = time = 2.4 [s]
15 = 0.5*a*(2.4)^2
a = 5.208 [m/s^2]
We can use the same equation to find the time.
30 = 15 + 0.5*(5.208)*t^2
t = 2.4 [s]
T = 2.4 + 2.4 = 4.8 [s]
<span>There is six horizen.
1. O Horizon - The top, organic layer of soil,
2. A Horizon - The layer called topsoil;
3. E Horizon - This layer is beneath the A Horizon and above the
B Horizon. It is made up mostly of sand.
4. B Horizon - Also called the subsoil - this layer is beneath the E
Horizon and above the C Horizon.
5. C Horizon - it's called regolith: the layer beneath the B Horizon
and above the R Horizon.
6 R Horizon - this is last and the unweathered rock layer that is
beneath all the other layers.</span>