Answer:
Therefore, when an atom becomes a positive ion is pulls its electrons closer, decreasing is radius moreover, when it becomes a negative ion, it pulls its electrons closer and decreases the radius.
The increase of the boling point of a solution is a colligative property.
The formula for the increase of the normal boiling point of water is:
ΔTb = Kb * m
Where m is the molallity of the solution and Kb is the molal boiling constant in °C/mol.
ΔTb = 0.51 °C / m * 0.100 m = 0.051 °C.
So, the new boiling temperature is Tb = 100°C + 0.051°C = 100.051 °C.
Answer: 100.051 °C
Answer:
The lanthanides and the actinides at the bottom of the table are sometimes known as the inner transition metals because they have atomic numbers that fall between the first and second elements in the last two rows of the transition metals
First you have to moles so multiply .0483L X .55M= .026565 Multiply moles by mole ratio which is 1/2, so the moles becomes .013283 now molarity=moles/volume; divide .013283/.015L=.885533M significant figures and you final answer is 0.89M
Answer:
They have electrons in their 3d- and 4s-orbital for bond formation.
Explanation:
d- metals or transition metal are metal which form ion with partially filled d-orbital. Examples are iron and manganese.
The metals have 2 electrons in their 4s orbital. If only this is used for bonding, they will form compounds where they have oxidation State of +2 as seen in MnO.
If two 4s and one of 3d electrons are used, oxidation state of +3 is formed as seen in FeCl3.
If two 2s electron I used with two 3d electrons, compound with oxidation state of +4 is formed as seen in MnO2