Answer:
A tensor is a quantity, for example a stress or a strain, which has magnitude, direction, and a plane in which it acts. Stress and strain are both tensor quantities. ... A tensor is a quantity, for example a stress or a strain, which has magnitude, direction, and a plane in which it acts.
Inertia Tensor. where I = the inertia tensor. The angular momentum of a rigid body rotating about an axis passing through the origin of the local reference frame is in fact the product of the inertia tensor of the object and the angular velocity. ... As shown in [7], the inertia tensor is symmetric.
Explanation:
Hope dis help
The correct answer among the choices given is option B. The energy transformation that occurs in the core of a nuclear reactor is from nuclear energy to thermal energy. In a power plant nuclear fission which involves nuclear energy to heat up water around it. This part is the core of the process.
Answer:
Solution is in explanation
Explanation:
part a)
For normalization we have
![\int_{0}^{\infty }f(x)dx=1\\\\\therefore \int_{0}^{\infty }ae^{-kx}dx=1\\\\\Rightarrow a\int_{0}^{\infty }e^{-kx}dx=1\\\\\frac{a}{-k}[\frac{1}{e^{kx}}]_{0}^{\infty }=1\\\\\frac{a}{-k}[0-1]=1\\\\\therefore a=k](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dae%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5CRightarrow%20a%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bkx%7D%7D%5D_%7B0%7D%5E%7B%5Cinfty%20%7D%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B0-1%5D%3D1%5C%5C%5C%5C%5Ctherefore%20a%3Dk)
Part b)
![\int_{0}^{L }f(x)dx=1\\\\\therefore Re(\int_{0}^{L }ae^{-ikx}dx)=1\\\\\Rightarrow Re(a\int_{0}^{L }e^{-ikx}dx)=1\\\\\therefore Re(\frac{a}{-ik}[\frac{1}{e^{ikx}}]_{0}^{L})=1\\\\\Rightarrow Re(\frac{a}{-ik}(e^{-ikL}-1))=1\\\\\frac{a}{k}Re(\frac{1}{-i}(cos(-kL)+isin(-kL)-1))=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7BL%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cint_%7B0%7D%5E%7BL%20%7Dae%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28a%5Cint_%7B0%7D%5E%7BL%20%7De%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bikx%7D%7D%5D_%7B0%7D%5E%7BL%7D%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%28e%5E%7B-ikL%7D-1%29%29%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7Bk%7DRe%28%5Cfrac%7B1%7D%7B-i%7D%28cos%28-kL%29%2Bisin%28-kL%29-1%29%29%3D1)

Answer:
I attached an image that should help.
Explanation:
Check it out.
In the question, you just gave a complete and detailed
description of the plane's velocity vector:
4,000/16 meters/second , heading 35 degrees .
You might want to simplify the speed and make it a unit rate,
but otherwise, it's perfect.
250 meters/second, heading 35 degrees .