Answer:
-15-12-14=-13
Explanation:
we simplify by opening the bracket
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
Definition: Cubic centimeter. A cubiccentimetre (cm3) is equal to thevolume of a cube with side length of 1 centimetre. It was the base unit ofvolume of the CGS system of units, and is a legitimate SI unit. It is equal to a millilitre (ml).
Convert ml to cm cubed - Conversion of Measurement Units
<u>Answer:</u> The standard potential of the cell is 0.77 V
<u>Explanation:</u>
We know that:

The substance having highest positive
reduction potential will always get reduced and will undergo reduction reaction.
The half reaction follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u>
( × 2)
To calculate the
of the reaction, we use the equation:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
Putting values in above equation follows:

Hence, the standard potential of the cell is 0.77 V
<span>NaCl is poster-compound for ionic bonding. The bonds in NaCl have about 70% ionic character, making the bond highly polar. its overstatement to state that there is actual ion in NaCl with +1 and -1 charge but actual charge of Na and Cl is +1 and -1 ion, since Nacl exist as a network of highly charged particle and not discrete molecule, NaCl particle does not exhibit intermolecular forces.
Water molecule on other hand exhibit London dispersion force, keesom force, and hydrogen bonding.
The polar water molecule are attracted to the polarized Na and Cl atoms. This is what allow NaCl(s) to dissolve and ionize in water. Therefore type of attraction in NaCl is ion-dipole attraction.</span>