Answer:
(g o f) (x) = 2x + 16
Step-by-step explanation:
" (g o f) (x) )" is called "the composition of f and g."
Evaluating this involves substituting the function f(x) = 2x + 1 for x in g(x) = x+14:
(g o f) (x) = 2(x+1) + 14, or
(g o f) (x) = 2x + 2 + 14, or
(g o f) (x) = 2x + 16
Look up "Everything You Need To Know About Math In One Big Fat Notebook pdf." It's the best thing I've ever been given, I have it with me in math class all the time and I've aced every test.
Question 1:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5
--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11
--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------
Question 2:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x
Slope = 9
Slope of the parallel line = 9
--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5
--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
You have two equations.
since the second is already isolated, sub in x-4 for every y in equation 1 so that
![x^{2} - 4 [(x-4)^{2}] =16 ](https://tex.z-dn.net/?f=%20x%5E%7B2%7D%20-%204%20%5B%28x-4%29%5E%7B2%7D%5D%20%3D16%0A%20)
expand, collect like terms, factor to find x, then plug x value back into original equation to find y