1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
2 years ago
12

Guys I need your help !!!

Mathematics
1 answer:
mars1129 [50]2 years ago
4 0

Answer:

hope this helps you

a lot

have a great day..

You might be interested in
Which pair of angle measures satisfy the condition sin J = cos K?
earnstyle [38]
J = K = 45° or 315°
...........................................................
3 0
3 years ago
Which expressions record the product of exactly two factors ?
Natasha2012 [34]

Answer:

B. 5(x + y)

C. (x - y)(x + y)

4 0
3 years ago
Read 2 more answers
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Choose an ecosystem and describe a food chain within that ecosystem, giving examples of producers and consumers. plz help this i
FrozenT [24]

Answer:

<em>The food chain showing seven organisms can be drawn as follows: </em>

<em> </em>

<em>Plants → grasshoppers → mice → frog → snakes→ eagles → decomposers </em>

<em> </em>

<em>The plants are the primary source of food in a food chain or a food web. The animals which feed on plants will be termed as herbivores or primary consumers like the grasshopper. The organisms feeding on primary consumers will be the secondary consumers like mice. </em>

<em> </em>

<em>An energy pyramid for three of the organisms can be shown as follows: </em>

<em> </em>

<em>               mice (10 kilocalories) </em>

<em> </em>

<em>                    ↑ </em>

<em> </em>

<em>         Grasshoppers (100 kilocalories) </em>

<em> </em>

<em>                    ↑ </em>

<em> </em>

<em>        Plants ( 1000 kilocalories) </em>

<em> </em>

<em>As the energy pyramid shows, only about 10% of the energy travels from one trophic level to another.</em>

5 0
2 years ago
A school club is raising money for a trip, and needs to reach $5,000. Their
lukranit [14]

Answer:

It's C.) It's the amount of money they raise each week.

Step-by-step explanation:

Hope this helps :))

3 0
3 years ago
Other questions:
  • Please help with my geometry
    8·1 answer
  • A coin is flipped four times, and the result is recorded for each flip. How many possible outcomes are there for the experiment?
    7·1 answer
  • Factor -1/2out of -1/2x+6
    5·1 answer
  • Whoever gets it right and selects all the corret ones gets brainly  also plz help 
    9·1 answer
  • A jar contains jellybeans that are all the same size and shape.
    14·1 answer
  • Which graph represents the function f(x)=2x−1+3 ?
    15·1 answer
  • At an airport, its costs $7 to park for up to one hour and $5 per hour for each additional hour. Let x represent the number of h
    14·1 answer
  • What phone is ringing now. ok, I... answer it.​
    8·2 answers
  • PLEASE HELP <br> Options for B= <br> 30<br> Banks height <br> F= <br> 30 <br> Firehouse's height
    13·1 answer
  • The graph shows how the number of flowers Gavin can have in his garden is related to the number of seed packets he purchases.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!