The answer is a which is zero
The longest wavelength of radiation used to break carbon-carbon bonds is 344 nm.
<u>Explanation:</u>
The longest wavelength of radiation can also be stated as the minimum radiation frequency required to cut carbon-carbon bond should be equal to the threshold energy of the carbon-carbon bonds.
The threshold energy will be equal to the binding energy of the carbon-carbon bonds. As it is known that carbon-carbon bonds exhibit a binding energy of 348 kJ/mole, the threshold energy to break it, is determined as followed.
First, we have to convert the energy from kJ/mol to J, i.e., energy for the carbon-carbon molecules,

As,

So,

Thus,
is the longest wavelength of radiation used to break carbon-carbon bonds.
Answer : The time required is, 16.1 minutes.
Explanation :
First we have to calculate the amount of heat required to increase the temperature is:


where,
Q = amount of heat required = ?
m = mass
= density of air = 
V = volume of air
C = specific heat of air = 
= change in temperature = 
Now put all the given values in above formula, we get:



Now we have to calculate the time required.
Formula used :

where,
t = time required = ?
Q = amount of heat required = 
P = power = 1500 W
Now put all the given values in above formula, we get:


Thus, the time required is, 16.1 minutes.
Answer:
U = 80.91 J
Explanation:
In order to calculate the electric potential energy between the three charges you use the following formula:
(1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q1: q2 charge
r1,2: distance between charges 1 and 2.
For the three charges you have:
(2)
You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:
q = 1.45μC = 1.45*10^-6C
r = 0.700mm = 0.700*10^-3m

The electric potential energy between the three charges is 80.91 J
Answer:
It is
Explanation:
1 Answer. The volume is 37.0 cm3Au .