Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
<h3>What is total internal reflection?</h3>
The term total internal reflection occurs when light is moving from a denser to a less dense medium such as from glass to air. This phenomenon occurs at the interface between the two media.
There are two conditions necessary for total internal reflection and they are;
1) Light must travel from a denser to a less dense medium
2) The angle of incidence in the denser medium must be greater than the critical angle.
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
Learn more about total internal reflection:brainly.com/question/13088998
#SPJ1
Answer:

Explanation:
given,
total deflection = 4.12 cm
Electric field = 1.1 ×10³ V/m
plate length = 6 cm
distance between them = 12 cm
using formula

q = 1.6 × 10⁻¹⁹ C
m = 9.11 x 10⁻³¹ kg
d = 0.06 m
L = 0.12 m

v_0 = 6496355.63 m/s




Answer:
B) Water is a solvent
Explanation:
Among many other chemicals, water can dissolve a variety of substances. The solvent properties of chemicals are far beyond it. That property makes water a universal solvent.
Water has one atom of oxygen and two atoms of hydrogen.
One side of the water molecule is positively charged and the other side is negatively charged. This property attracts other substances like salt and disintegrates into positive and negatively charged ions. This property is due to its physical and chemical nature.
<em></em>
Answer:
1. The magnitude of the force from the spring on the object is zero on <em>Equilibrium.</em>
2. The magnitude of the force from the spring on the object is a maximum on <em>The top and bottom.</em>
3. The magnitude of the net force on the object is zero on <em>The Bottom.</em>
4. The magnitude of the force on the object is a maximum on <em>the Top.</em>
Explanation:
<em>1. Because the change in position delta X is zero.</em>
<em>2. Because of delta X.</em>
<em>3. Beacuse, the force of gravity and the force of the spring oppose each other to keep the block at rest, away from the equilibrium position.</em>
<em>4. Because, the force of the spring from compressiom and the force of gravity both act on the mass.</em>