Answer:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong):</em>
a) a×b = 34.27k
b) a·b = 128.43
c) (a + b)·b = 305.17
d) The component of a along the direction of b = 9.66
Explanation:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong)</em> we can proceed as follows:
a) The vectorial product, a×b is:

b) The escalar product a·b is:

c) <u>Asumming (a</u><u> </u><u>+ b)·b</u> <em>instead a+b·b</em> we have:
![(a + b)\cdot b = [(8.6 + 9.3)i + (5.1 + 9.5)j]\cdot (9.3i + 9.5j) = (17.9i + 14.6j)\cdot (9.3i + 9.5j) = 305.17](https://tex.z-dn.net/?f=%28a%20%2B%20b%29%5Ccdot%20b%20%3D%20%5B%288.6%20%2B%209.3%29i%20%2B%20%285.1%20%2B%209.5%29j%5D%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20%2817.9i%20%2B%2014.6j%29%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20305.17)
d) The component of a along the direction of b is:

I hope it helps you!
Answer:
A) T.
Explanation:
Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:
So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.
Answer:
The specific gravity of the unkown liquid is 15.
Explanation:
Gauge pressure, at the bottom of the tank in this case, can be calculated from

where
and
are the height of the column of oil and the unkown liquid, respectively. Writing for
, we have

Relative to water, the unknow liquid specific weight is 15 times bigger, therefore this is its specific gravity as well.
Answer:
Explanation:
Given
Initially Reading on the odometer is 
Final reading on the odometer is 
Time taken is 
average velocity 



Thus the average velocity of mail truck is 