Answer:

Explanation:
The magnetic field strength is given by:

where
is the vacuum permeability
I is the current
r is the distance from the wire
In this problem,
I = 6.5 A
r = 6.3 cm = 0.063 m
So, the magnetic field strength is

Answer:
the diameter of the smaller vessels is 9.90 mm
Explanation:
The computation of the diameter of the smaller vessels is given below;
Given that
The larger vessel of the diameter is 14mm
So,
d1 = 7 mm
let us assume the diameter of the smaller artery is d2
Now we used the equation of continuity i.e.
v × pi × d1^2 = 2 × v × pi × d2^2
14^2 = 2 × d2^2
d2 = 9.90 mm
Hence, the diameter of the smaller vessels is 9.90 mm
Answer:
<em>The 150 lb woman at 30 mph would experience the greatest force of impact in a sudden collision.</em>
Explanation:
<u>Momentum
</u>
The force of impact exerted on an moving object that suddenly stops or changes its movement is measures by the physics magnitude called Impulse, which can be computed with the formula

Where F is the force and t is the time that force acts to produce the impact on the object. The impulse is also defined as the change in the momentum of the object:

Or equivalently

The question describes four situations where different persons and object suffer impact that make them stop from their moving state. Thus
and the impulse is

We are only interested in the relative magnitudes of each case, so we won't consider the sign in the calculations
Case 1: A 200 lb. man traveling 20 mph

Case 2: A 150 lb. woman at 30 mph

Case 3: A 35 lb. infant at 75 mph

Case 4: A 75 lb. child at 55 mph

By comparing the results, we can see that the 150 lb woman at 30 mph would experience the greatest force of impact in a sudden collision.