Explanation:
1) Boyle's Law: This law states that pressure is inversely related to the volume occupied by the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
- When the size of the chamber is increased the volume occupied the gas will increase with which pressure exerted by the gas will decrease down.
- When we press the inflated balloon the pressure on the gas is increased with which volume of the occupied by the gas inside the balloon decreased.
2) Charles' Law: This law states that volume occupied by the gas is directly related to the temperature of the gas at constant pressure and number of moles.
(At constant pressure and number of moles)
- The size of the balloon deceases because the in winters the temperature decreases with which volume of the gas present in the balloon also decreases.
- When the flexible closed container is heated the temperature of the gas inside the container increases with which the volume occupied by the gas in the container will increase resulting in expanding of container.
3) Avogadro's Law: This law states that volume occupied by the gas is directly related to the number of moles of the gas at constant pressure and temperature.
(At constant temperature and pressure)
When we blow air into the balloon the umber of air particles increases with which the volume of the gas inside the balloon also increases resulting in increase in size of the balloon.
Answer:
A precipate is a solid while an aqueous solution is liquid.
Explanation:
A precipitate is a solid which separates after a chemical reaction occurs. It is the solid product of the reaction.
An aqueous solution is formed when a substance is dissolved in water.
14.292 grams of Fe2O3 is formed when 10 gram of iron metal is burned.
Explanation:
The balanced equation for the reaction is to be known so that number of moles taking part can be known.
The balanced chemical equation is
4Fe + 3⇒ 2
From the given weight of iron to be used for the production of , number of moles of Fe taking part in the reaction can be known by the formula:
Number of moles= mass ÷ Atomic mass of one mole of the element.
(Atomic weight of Fe is 55.845 gm/mole)
Putting the values in equation
Number of moles = 10 gm ÷ 55.845 gm/mole
= 0.179 moles
Applying the stoichiometry concept
4 moles of Fe gives 2 Moles of Fe2O3
0.179 moles will produce x moles of Fe2O3
So, 2÷ 4 = x ÷ 0.179
2/4 = x/ 0.179
2 × 0.179 = 4x
2 × 0.179 / 4 = x
x = 0.0895 moles
So from 10 grams of iron metal 0.0895 moles of Fe2O3 is formed.
Now the formula used above will give the weight of Fe2O3
weight = atomic weight × number of moles
= 159.69 grams × 0.0895
= 14.292 grams of Fe2O3 formed.
Answer is: concentration of hydrogenium ions is 9,54·10⁻⁵ M.
c(HNO₂) = 0,075 M.
c(NaNO₂) = 0,035 M.
Ka(HNO₂) = 4,5·10⁻⁵.
This is buffer solution, so use <span>Henderson–Hasselbalch equation:
pH = pKa + log(c(</span>NaNO₂) ÷ c(HNO₂)).
pH = -log(4,5·10⁻⁵) + log(0,035 M ÷ 0,075 M).
pH = 4,35 - 0,33.
pH = 4,02.
<span>[H</span>₃O⁺] = 10∧(-4,02).
<span>[H</span>₃O⁺] = 0,0000954 M = 9,54·10⁻⁵ M.