Answer: Combustion changes the potential chemical energy into kinetic energy in the form of heat. For combustion an organic wood combines with oxygen already in the air and undergoes a chemical reaction that gives off carbon dioxide,water,and energy in the form of heat and light.
I bottle:
250 * 150mg = 37500mg
If 37500mg ------- cost ------- <span> $2.95
so 1mg ------- cost ------- x
x = 1mg*</span> $2.95 / 37500mg = $7,87*10⁻⁵
II bottle
125 * 200mg = 25000mg
If 25000mg ---------- cost ---------- <span>$3.50
so 1mg ---------- cost ---------- x
x = 1mg* </span>$3.50 / 25000mg = $0,00014=$1,4*10⁻⁴
$7,87*10⁻⁵ < $1,4*10<span>⁻⁴
</span>
1st bottle is better bargain cause 1mg of aspirin its cheaper than in 2nd.
If there is an increase in industrial activity, that means that more heat will be dissipated to the atmosphere in the form of carbon dioxide. Industrialization requires fuel to keep the processes on the go. At the end of the pipeline, the combustion of fuel would result to carbon dioxide released to the atmosphere. That's how it is contributing to the global climate change through the greenhouse effect.
Answer:


Explanation:
first write the equilibrium equaion ,
⇄ 
assuming degree of dissociation
=1/10;
and initial concentraion of
=c;
At equlibrium ;
concentration of
![[C_3H_5O_3^{-} ]= c\alpha](https://tex.z-dn.net/?f=%5BC_3H_5O_3%5E%7B-%7D%20%20%5D%3D%20c%5Calpha)
![[H^{+}] = c\alpha](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20c%5Calpha)

is very small so
can be neglected
and equation is;

= 
![P_H =- log[H^{+} ]](https://tex.z-dn.net/?f=P_H%20%3D-%20log%5BH%5E%7B%2B%7D%20%5D)





composiion ;
![c=\frac{1}{\alpha} \times [H^{+}]](https://tex.z-dn.net/?f=c%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%20%5Ctimes%20%5BH%5E%7B%2B%7D%5D)
![[H^{+}] =antilog(-P_H)](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3Dantilog%28-P_H%29)
![[H^{+} ] =0.0014](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%20%3D0.0014)

