We can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = 303.15 x 300 / 333.15
<span>V2 = 272.99 cm³</span>
A nucleotide is composed of a phosphate group, a nitrogen-containing base, and a five-carbon sugar amino group. A nucleotide is composed of a phosphate group, a nitrogen-containing base, and a five-carbon sugar amino group. A nucleotide is the building block or structural component of DNA and RNA. It consists of a base , that is one from adenine, thymine, guanine, and cytosine. and a molecule of sugar and one of phosphoric acid.
Answer:
Contents Home Courses University of California Davis UCD Chem 2C: General Chemistry III UCD Chem 2C: Larsen Text Unit 4: Chemical Kinetics Expand/collapse global location
4.7: Collision Theory
Last updatedSep 3, 2020
4.6: Using Graphs to Determine (Integrated) Rate Laws
4.8: Temperature and Rate
picture_as_pdf
Readability
Donate
Learning Objectives
Molecules must collide in order to react.
In order to effectively initiate a reaction, collisions must be sufficiently energetic (kinetic energy) to break chemical bonds; this energy is known as the activation energy.
As the temperature rises, molecules move faster and collide more vigorously, greatly increasing the likelihood of bond breakage upon collision.
Collision theory explains why different reactions occur at different rates, and suggests ways to change the rate of a reaction. Collision theory states that for a chemical reaction to occur, the reacting particles must collide with one another. The rate of the reaction depends on the frequency of collisions. The theory also tells us that reacting particles often collide without reacting. For collisions to be successful, reacting particles must (1) collide with (2) sufficient energy, and (3) with the proper orientation.
mark me as brainly
3 moles of oxygen will react with 1 mole of ethylene. Convert 12.9 L of oxygen to x moles of oxygen, then divide by three.