The answer is B. Enzymes.
Enzymes are biological catalysts that help cause reactions in your body.
Answer:
The equilibrium will shift left.
Explanation:
Hope this helps <3
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.
Explanation:
It is given that r = 0.283 nm. As 1 nm =
.
Hence, 0.283 nm = 
- Formula for coulombic energy is as follows.

where, e =
C
= 

= 
- As 1 eV =

So, 1 J = 
Hence, U = 
= 8.9 eV
- Also, 1 J =

=
kJ/mol
Therefore, U =
kJ/mol
= 
First, you need to calculate the standard cell potential using standard reduction potential from a textbook or online. Since Mg becomes Mg+2, magnesium is being oxidized because it is losing electrons, you need to flip its potential
Fe+2 + 2e- --> Fe potential= -0.44
Mg+2 + 2e- --> Mg potential= -2.37
Cell potential= (-0.44) + (+2.37)= 1.93 V
Now, you need to use Nernst formula to get the answer. I have attached a PDF with the work.