Answer:
Speed = 0.296m/2
Period = 0.203 s
Explanation:
If by 'long' you mean the wavelength of the waves, then the wavelength
.
The frequency
of the waves is 14.8 waves every 3 seconds or
.
Now the relationship between wavelength
, frequency
and speed
of the waves is:

We put in the values
and
and get:
Now the period
is just the inverse of the frequency, or


Answer:
The tension in the string is
.
Explanation:
For a string with tension
and linear density
carrying a transverse wave at speed
it is true that

solving for
we get:

Now, the transverse wave covers the distance of 7.4mm in 0.88s, which means it's speed is

And it's linear density (mass per unit length) is

Therefore, the tension in the cord is

or in micro newtons

Answer:
5.3 cm
Explanation:
This question is an illustration of real and apparent distance.
From the question, we have the following given parameters
Real Distance, R = 8.0cm
Refractive Index, μ = 1.5
Required
Determine the apparent distance (A)
The relationship between R, A and μ is:
μ = R/A
i.e.
Refractive Index = Real Distance ÷ Apparent Distance
Substitute values in the above formula
1.5 = 8/A
Multiply both sides by A
1.5 * A = A * 8/A
1.5A = 8
Divide both side by 1.5
1.5A/1.5 = 8/1.5
A = 8/1.5
A = 5.3cm
Hence, the letters would appear at a distance of 5.3cm
Answer:
A satellite on non-equatorial orbit would show daily motion even if its period is exactly 1 sidereal day.
Explanation:
Answer:
Here are 5:
Distance from source to receiver
Wind speed and direction
Wind gradients
Temperature gradients
Atmospheric attenuation
and there are many more...
Hope that was helpful.Thank you!!!