Actually what the problem meant about the westward
component of the ball’s displacement is the horizontal component of the
displacement. To help us better understand the problem, I attached a figure of
the situation.
We can see from the figure that to solve for the value of
the horizontal component, we have to make use of the sin function. That is:
sin θ = side opposite to the angle / hypotenuse of the
triangle
sin 42 = x / 40 m
x = (40 m) sin 42
x = 26.77 m
Therefore the ball has a westward
displacement of about 26.77 m
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m
Answer:
a. The human body has nearly the same density as salt water after exhaling.
b. The human body will always float in the Dead Sea.
Explanation:
According to the concept of floating on the basis of density, any body that is put in a fluid of density greater than its own density will always float due to the force of buoyancy from the liquid.
- The portion of the object submerged while the object is floating depends upon the density of the object as compared to the density of the fluid. This is governed by the equation:

where:
density of the fluid
density of the object
volume of the object submerged in the fluid
total volume of the object
Well a isn’t it so i’m gonna go with d the american social statesman